typst/src/eval/value.rs
2021-12-15 20:27:41 +01:00

556 lines
15 KiB
Rust

use std::any::Any;
use std::cmp::Ordering;
use std::fmt::{self, Debug, Formatter};
use std::hash::Hash;
use std::rc::Rc;
use super::{ops, Array, Class, Dict, Function, Node};
use crate::diag::StrResult;
use crate::geom::{Angle, Color, Fractional, Length, Linear, Relative, RgbaColor};
use crate::layout::Layout;
use crate::syntax::Spanned;
use crate::util::EcoString;
/// A computational value.
#[derive(Clone)]
pub enum Value {
/// The value that indicates the absence of a meaningful value.
None,
/// A value that indicates some smart default behaviour.
Auto,
/// A boolean: `true, false`.
Bool(bool),
/// An integer: `120`.
Int(i64),
/// A floating-point number: `1.2`, `10e-4`.
Float(f64),
/// A length: `12pt`, `3cm`.
Length(Length),
/// An angle: `1.5rad`, `90deg`.
Angle(Angle),
/// A relative value: `50%`.
Relative(Relative),
/// A combination of an absolute length and a relative value: `20% + 5cm`.
Linear(Linear),
/// A fractional value: `1fr`.
Fractional(Fractional),
/// A color value: `#f79143ff`.
Color(Color),
/// A string: `"string"`.
Str(EcoString),
/// An array of values: `(1, "hi", 12cm)`.
Array(Array),
/// A dictionary value: `(color: #f79143, pattern: dashed)`.
Dict(Dict),
/// A node value: `[*Hi* there]`.
Node(Node),
/// An executable function.
Func(Function),
/// A class of nodes.
Class(Class),
/// A dynamic value.
Dyn(Dynamic),
}
impl Value {
/// Create an inline-level node value.
pub fn inline<T>(node: T) -> Self
where
T: Layout + Debug + Hash + 'static,
{
Self::Node(Node::inline(node))
}
/// Create a block-level node value.
pub fn block<T>(node: T) -> Self
where
T: Layout + Debug + Hash + 'static,
{
Self::Node(Node::block(node))
}
/// The name of the stored value's type.
pub fn type_name(&self) -> &'static str {
match self {
Self::None => "none",
Self::Auto => "auto",
Self::Bool(_) => bool::TYPE_NAME,
Self::Int(_) => i64::TYPE_NAME,
Self::Float(_) => f64::TYPE_NAME,
Self::Length(_) => Length::TYPE_NAME,
Self::Angle(_) => Angle::TYPE_NAME,
Self::Relative(_) => Relative::TYPE_NAME,
Self::Linear(_) => Linear::TYPE_NAME,
Self::Fractional(_) => Fractional::TYPE_NAME,
Self::Color(_) => Color::TYPE_NAME,
Self::Str(_) => EcoString::TYPE_NAME,
Self::Array(_) => Array::TYPE_NAME,
Self::Dict(_) => Dict::TYPE_NAME,
Self::Node(_) => Node::TYPE_NAME,
Self::Func(_) => Function::TYPE_NAME,
Self::Class(_) => Class::TYPE_NAME,
Self::Dyn(v) => v.type_name(),
}
}
/// Try to cast the value into a specific type.
pub fn cast<T>(self) -> StrResult<T>
where
T: Cast<Value>,
{
T::cast(self)
}
/// Join the value with another value.
pub fn join(self, rhs: Self) -> StrResult<Self> {
ops::join(self, rhs)
}
/// Return the debug representation of the value.
pub fn repr(&self) -> EcoString {
format_eco!("{:?}", self)
}
/// Return the display representation of the value.
pub fn show(self) -> Node {
match self {
Value::None => Node::new(),
Value::Int(v) => Node::Text(format_eco!("{}", v)),
Value::Float(v) => Node::Text(format_eco!("{}", v)),
Value::Str(v) => Node::Text(v),
Value::Node(v) => v,
// For values which can't be shown "naturally", we print the
// representation in monospace.
v => Node::Text(v.repr()).monospaced(),
}
}
}
impl Default for Value {
fn default() -> Self {
Value::None
}
}
impl Debug for Value {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
Self::None => f.pad("none"),
Self::Auto => f.pad("auto"),
Self::Bool(v) => Debug::fmt(v, f),
Self::Int(v) => Debug::fmt(v, f),
Self::Float(v) => Debug::fmt(v, f),
Self::Length(v) => Debug::fmt(v, f),
Self::Angle(v) => Debug::fmt(v, f),
Self::Relative(v) => Debug::fmt(v, f),
Self::Linear(v) => Debug::fmt(v, f),
Self::Fractional(v) => Debug::fmt(v, f),
Self::Color(v) => Debug::fmt(v, f),
Self::Str(v) => Debug::fmt(v, f),
Self::Array(v) => Debug::fmt(v, f),
Self::Dict(v) => Debug::fmt(v, f),
Self::Node(_) => f.pad("<template>"),
Self::Func(v) => Debug::fmt(v, f),
Self::Class(v) => Debug::fmt(v, f),
Self::Dyn(v) => Debug::fmt(v, f),
}
}
}
impl PartialEq for Value {
fn eq(&self, other: &Self) -> bool {
ops::equal(self, other)
}
}
impl PartialOrd for Value {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
ops::compare(self, other)
}
}
impl From<i32> for Value {
fn from(v: i32) -> Self {
Self::Int(v as i64)
}
}
impl From<usize> for Value {
fn from(v: usize) -> Self {
Self::Int(v as i64)
}
}
impl From<RgbaColor> for Value {
fn from(v: RgbaColor) -> Self {
Self::Color(v.into())
}
}
impl From<&str> for Value {
fn from(v: &str) -> Self {
Self::Str(v.into())
}
}
impl From<String> for Value {
fn from(v: String) -> Self {
Self::Str(v.into())
}
}
impl From<Dynamic> for Value {
fn from(v: Dynamic) -> Self {
Self::Dyn(v)
}
}
/// A dynamic value.
#[derive(Clone)]
pub struct Dynamic(Rc<dyn Bounds>);
impl Dynamic {
/// Create a new instance from any value that satisifies the required bounds.
pub fn new<T>(any: T) -> Self
where
T: Type + Debug + PartialEq + 'static,
{
Self(Rc::new(any))
}
/// Whether the wrapped type is `T`.
pub fn is<T: 'static>(&self) -> bool {
self.0.as_any().is::<T>()
}
/// Try to downcast to a reference to a specific type.
pub fn downcast<T: 'static>(&self) -> Option<&T> {
self.0.as_any().downcast_ref()
}
/// The name of the stored value's type.
pub fn type_name(&self) -> &'static str {
self.0.dyn_type_name()
}
}
impl Debug for Dynamic {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
Debug::fmt(&self.0, f)
}
}
impl PartialEq for Dynamic {
fn eq(&self, other: &Self) -> bool {
self.0.dyn_eq(other)
}
}
trait Bounds: Debug + 'static {
fn as_any(&self) -> &dyn Any;
fn dyn_eq(&self, other: &Dynamic) -> bool;
fn dyn_type_name(&self) -> &'static str;
}
impl<T> Bounds for T
where
T: Type + Debug + PartialEq + 'static,
{
fn as_any(&self) -> &dyn Any {
self
}
fn dyn_eq(&self, other: &Dynamic) -> bool {
if let Some(other) = other.downcast::<Self>() {
self == other
} else {
false
}
}
fn dyn_type_name(&self) -> &'static str {
T::TYPE_NAME
}
}
/// The type of a value.
pub trait Type {
/// The name of the type.
const TYPE_NAME: &'static str;
}
/// Cast from a value to a specific type.
pub trait Cast<V>: Sized {
/// Check whether the value is castable to `Self`.
fn is(value: &V) -> bool;
/// Try to cast the value into an instance of `Self`.
fn cast(value: V) -> StrResult<Self>;
}
/// Implement traits for primitives.
macro_rules! primitive {
(
$type:ty: $name:literal, $variant:ident
$(, $other:ident($binding:ident) => $out:expr)*
) => {
impl Type for $type {
const TYPE_NAME: &'static str = $name;
}
impl Cast<Value> for $type {
fn is(value: &Value) -> bool {
matches!(value, Value::$variant(_) $(| Value::$other(_))*)
}
fn cast(value: Value) -> StrResult<Self> {
match value {
Value::$variant(v) => Ok(v),
$(Value::$other($binding) => Ok($out),)*
v => Err(format!(
"expected {}, found {}",
Self::TYPE_NAME,
v.type_name(),
)),
}
}
}
impl From<$type> for Value {
fn from(v: $type) -> Self {
Value::$variant(v)
}
}
};
}
/// Implement traits for dynamic types.
macro_rules! dynamic {
($type:ty: $name:literal, $($tts:tt)*) => {
impl $crate::eval::Type for $type {
const TYPE_NAME: &'static str = $name;
}
castable! {
$type,
Expected: <Self as $crate::eval::Type>::TYPE_NAME,
$($tts)*
@this: Self => this.clone(),
}
impl From<$type> for $crate::eval::Value {
fn from(v: $type) -> Self {
$crate::eval::Value::Dyn($crate::eval::Dynamic::new(v))
}
}
};
}
/// Make a type castable from a value.
macro_rules! castable {
(
$type:ty,
Expected: $expected:expr,
$($pattern:pat => $out:expr,)*
$(@$dyn_in:ident: $dyn_type:ty => $dyn_out:expr,)*
) => {
impl $crate::eval::Cast<$crate::eval::Value> for $type {
fn is(value: &Value) -> bool {
#[allow(unused_variables)]
match value {
$($pattern => true,)*
$crate::eval::Value::Dyn(dynamic) => {
false $(|| dynamic.is::<$dyn_type>())*
}
_ => false,
}
}
fn cast(value: $crate::eval::Value) -> $crate::diag::StrResult<Self> {
let found = match value {
$($pattern => return Ok($out),)*
$crate::eval::Value::Dyn(dynamic) => {
$(if let Some($dyn_in) = dynamic.downcast::<$dyn_type>() {
return Ok($dyn_out);
})*
dynamic.type_name()
}
v => v.type_name(),
};
Err(format!("expected {}, found {}", $expected, found))
}
}
};
}
primitive! { bool: "boolean", Bool }
primitive! { i64: "integer", Int }
primitive! { f64: "float", Float, Int(v) => v as f64 }
primitive! { Length: "length", Length }
primitive! { Angle: "angle", Angle }
primitive! { Relative: "relative", Relative }
primitive! { Linear: "relative length", Linear, Length(v) => v.into(), Relative(v) => v.into() }
primitive! { Fractional: "fractional length", Fractional }
primitive! { Color: "color", Color }
primitive! { EcoString: "string", Str }
primitive! { Array: "array", Array }
primitive! { Dict: "dictionary", Dict }
primitive! { Node: "template", Node }
primitive! { Function: "function", Func }
primitive! { Class: "class", Class }
impl Cast<Value> for Value {
fn is(_: &Value) -> bool {
true
}
fn cast(value: Value) -> StrResult<Self> {
Ok(value)
}
}
impl<T> Cast<Spanned<Value>> for T
where
T: Cast<Value>,
{
fn is(value: &Spanned<Value>) -> bool {
T::is(&value.v)
}
fn cast(value: Spanned<Value>) -> StrResult<Self> {
T::cast(value.v)
}
}
impl<T> Cast<Spanned<Value>> for Spanned<T>
where
T: Cast<Value>,
{
fn is(value: &Spanned<Value>) -> bool {
T::is(&value.v)
}
fn cast(value: Spanned<Value>) -> StrResult<Self> {
let span = value.span;
T::cast(value.v).map(|t| Spanned::new(t, span))
}
}
/// A value that can be automatically determined.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub enum Smart<T> {
/// The value should be determined smartly based on the
/// circumstances.
Auto,
/// A forced, specific value.
Custom(T),
}
impl<T> Smart<T> {
/// Returns the contained custom value or a provided default value.
pub fn unwrap_or(self, default: T) -> T {
match self {
Self::Auto => default,
Self::Custom(x) => x,
}
}
}
impl<T> Default for Smart<T> {
fn default() -> Self {
Self::Auto
}
}
impl<T> Cast<Value> for Option<T>
where
T: Cast<Value>,
{
fn is(value: &Value) -> bool {
matches!(value, Value::None) || T::is(value)
}
fn cast(value: Value) -> StrResult<Self> {
match value {
Value::None => Ok(None),
v => T::cast(v).map(Some).map_err(|msg| with_alternative(msg, "none")),
}
}
}
impl<T> Cast<Value> for Smart<T>
where
T: Cast<Value>,
{
fn is(value: &Value) -> bool {
matches!(value, Value::Auto) || T::is(value)
}
fn cast(value: Value) -> StrResult<Self> {
match value {
Value::Auto => Ok(Self::Auto),
v => T::cast(v)
.map(Self::Custom)
.map_err(|msg| with_alternative(msg, "auto")),
}
}
}
/// Transform `expected X, found Y` into `expected X or A, found Y`.
fn with_alternative(msg: String, alt: &str) -> String {
let mut parts = msg.split(", found ");
if let (Some(a), Some(b)) = (parts.next(), parts.next()) {
format!("{} or {}, found {}", a, alt, b)
} else {
msg
}
}
#[cfg(test)]
mod tests {
use super::*;
#[track_caller]
fn test(value: impl Into<Value>, exp: &str) {
assert_eq!(format!("{:?}", value.into()), exp);
}
#[test]
fn test_value_debug() {
// Primitives.
test(Value::None, "none");
test(false, "false");
test(12i64, "12");
test(3.14, "3.14");
test(Length::pt(5.5), "5.5pt");
test(Angle::deg(90.0), "90deg");
test(Relative::one() / 2.0, "50%");
test(Relative::new(0.3) + Length::cm(2.0), "30% + 2cm");
test(Fractional::one() * 7.55, "7.55fr");
test(Color::Rgba(RgbaColor::new(1, 1, 1, 0xff)), "#010101");
// Collections.
test("hello", r#""hello""#);
test("\n", r#""\n""#);
test("\\", r#""\\""#);
test("\"", r#""\"""#);
test(array![], "()");
test(array![Value::None], "(none,)");
test(array![1, 2], "(1, 2)");
test(dict![], "(:)");
test(dict!["one" => 1], "(one: 1)");
test(dict!["two" => false, "one" => 1], "(one: 1, two: false)");
// Functions.
test(Function::new(None, |_, _| Ok(Value::None)), "<function>");
test(
Function::new(Some("nil".into()), |_, _| Ok(Value::None)),
"<function nil>",
);
// Dynamics.
test(Dynamic::new(1), "1");
}
}