2022-12-21 00:26:20 +01:00

701 lines
23 KiB
Rust

use crate::prelude::*;
use super::Spacing;
/// # Grid
/// Arrange content in a grid.
///
/// The grid element allows you to arrange content in a grid. You can define the
/// number of rows and columns, as well as the size of the gutters between them.
/// There are multiple sizing modes for columns and rows, including fixed sizes,
/// that can be used to create complex layouts.
///
/// The sizing of the grid is determined by the track sizes specified in the
/// arguments. Because each of the sizing parameters accepts the same values, we
/// will explain them here:
///
/// Each sizing argument accepts an array of track sizes. A track size is either
/// - a fixed length (e.g. `10pt`). The track will be exactly this size.
/// - `{auto}`. The track will be sized to fit its contents. It will be at most
/// as large as the remaining space. If there is more than one `auto` track
/// that, together, claim more than the available space, they will be resized
/// to fit the available space.
/// - a `fractional` length (e.g. `{1fr}`). Once all other tracks have been
/// sized, the remaining space will be divided among the fractional tracks
/// according to their fraction. For example, if there are two fractional
/// tracks, each with a fraction of `1`, they will each take up half of the
/// remaining space.
///
/// To specify a single track, the array can be omitted in favor of a single
/// value. To specify multiple `{auto}` tracks, enter the number of tracks
/// instead of a value. For example, `columns: {3}` is equivalent to
/// `columns: {(auto, auto, auto)}`.
///
/// ## Example
/// ```
/// #set text(hyphenate: true)
/// #let cell = rect.with(
/// inset: 6pt,
/// fill: rgb("e4e5ea"),
/// width: 100%,
/// radius: 6pt
/// )
///
/// #grid(
/// columns: (60pt, 1fr, 60pt),
/// rows: (60pt, auto),
/// gutter: 3pt,
/// cell(height: 100%)[*Easy to learn*],
/// cell(height: 100%)[Great output],
/// cell(height: 100%)[*Intuitive*],
/// cell[*Our best Typst yet*],
/// cell[
/// Responsive design in print
/// for everyone
/// ],
/// cell[*One more thing...*],
/// )
/// ```
///
/// ## Parameters
/// - cells: Content (positional, variadic)
/// The contents of the table cells.
///
/// The cells are populated in row-major order.
///
/// - rows: TrackSizings (named)
/// Defines the row sizes.
///
/// If there are more cells than fit the defined rows, the last row is
/// repeated until there are no more cells.
///
/// - columns: TrackSizings (named)
/// Defines the column sizes.
///
/// Either specify a track size array or provide an
/// integer to create a grid with that many `{auto}`-sized columns. Note that
/// opposed to rows and gutters, providing a single track size will only ever
/// create a single column.
///
/// - gutter: TrackSizings (named)
/// Defines the gaps between rows & columns.
///
/// If there are more gutters than defined sizes, the last gutter is repeated.
///
/// - column-gutter: TrackSizings (named)
/// Defines the gaps between columns. Takes precedence over `gutter`.
///
/// - row-gutter: TrackSizings (named)
/// Defines the gaps between rows. Takes precedence over `gutter`.
///
/// ## Category
/// layout
#[func]
#[capable(Layout)]
#[derive(Debug, Hash)]
pub struct GridNode {
/// Defines sizing for content rows and columns.
pub tracks: Axes<Vec<TrackSizing>>,
/// Defines sizing of gutter rows and columns between content.
pub gutter: Axes<Vec<TrackSizing>>,
/// The content to be arranged in a grid.
pub cells: Vec<Content>,
}
#[node]
impl GridNode {
fn construct(_: &Vm, args: &mut Args) -> SourceResult<Content> {
let TrackSizings(columns) = args.named("columns")?.unwrap_or_default();
let TrackSizings(rows) = args.named("rows")?.unwrap_or_default();
let TrackSizings(base_gutter) = args.named("gutter")?.unwrap_or_default();
let column_gutter = args.named("column-gutter")?.map(|TrackSizings(v)| v);
let row_gutter = args.named("row-gutter")?.map(|TrackSizings(v)| v);
Ok(Self {
tracks: Axes::new(columns, rows),
gutter: Axes::new(
column_gutter.unwrap_or_else(|| base_gutter.clone()),
row_gutter.unwrap_or(base_gutter),
),
cells: args.all()?,
}
.pack())
}
fn field(&self, name: &str) -> Option<Value> {
match name {
"columns" => Some(TrackSizing::encode_slice(&self.tracks.x)),
"rows" => Some(TrackSizing::encode_slice(&self.tracks.y)),
"column-gutter" => Some(TrackSizing::encode_slice(&self.gutter.x)),
"row-gutter" => Some(TrackSizing::encode_slice(&self.gutter.y)),
"cells" => Some(Value::Array(
self.cells.iter().cloned().map(Value::Content).collect(),
)),
_ => None,
}
}
}
impl Layout for GridNode {
fn layout(
&self,
vt: &mut Vt,
styles: StyleChain,
regions: Regions,
) -> SourceResult<Fragment> {
// Prepare grid layout by unifying content and gutter tracks.
let layouter = GridLayouter::new(
vt,
self.tracks.as_deref(),
self.gutter.as_deref(),
&self.cells,
regions,
styles,
);
// Measure the columns and layout the grid row-by-row.
layouter.layout()
}
}
/// Defines how to size a grid cell along an axis.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
pub enum TrackSizing {
/// A track that fits its cell's contents.
Auto,
/// A track size specified in absolute terms and relative to the parent's
/// size.
Relative(Rel<Length>),
/// A track size specified as a fraction of the remaining free space in the
/// parent.
Fractional(Fr),
}
impl TrackSizing {
pub fn encode(self) -> Value {
match self {
Self::Auto => Value::Auto,
Self::Relative(rel) => Spacing::Relative(rel).encode(),
Self::Fractional(fr) => Spacing::Fractional(fr).encode(),
}
}
pub fn encode_slice(vec: &[TrackSizing]) -> Value {
Value::Array(vec.iter().copied().map(Self::encode).collect())
}
}
impl From<Spacing> for TrackSizing {
fn from(spacing: Spacing) -> Self {
match spacing {
Spacing::Relative(rel) => Self::Relative(rel),
Spacing::Fractional(fr) => Self::Fractional(fr),
}
}
}
/// Track sizing definitions.
#[derive(Debug, Default, Clone, Eq, PartialEq, Hash)]
pub struct TrackSizings(pub Vec<TrackSizing>);
castable! {
TrackSizings,
sizing: TrackSizing => Self(vec![sizing]),
count: NonZeroUsize => Self(vec![TrackSizing::Auto; count.get()]),
values: Array => Self(values
.into_iter()
.filter_map(|v| v.cast().ok())
.collect()),
}
castable! {
TrackSizing,
_: AutoValue => Self::Auto,
v: Rel<Length> => Self::Relative(v),
v: Fr => Self::Fractional(v),
}
/// Performs grid layout.
struct GridLayouter<'a, 'v> {
/// The core context.
vt: &'a mut Vt<'v>,
/// The grid cells.
cells: &'a [Content],
/// The column tracks including gutter tracks.
cols: Vec<TrackSizing>,
/// The row tracks including gutter tracks.
rows: Vec<TrackSizing>,
/// The regions to layout children into.
regions: Regions<'a>,
/// The inherited styles.
styles: StyleChain<'a>,
/// Resolved column sizes.
rcols: Vec<Abs>,
/// Rows in the current region.
lrows: Vec<Row>,
/// The full height of the current region.
full: Abs,
/// The used-up size of the current region. The horizontal size is
/// determined once after columns are resolved and not touched again.
used: Size,
/// The sum of fractions in the current region.
fr: Fr,
/// Frames for finished regions.
finished: Vec<Frame>,
}
/// Produced by initial row layout, auto and relative rows are already finished,
/// fractional rows not yet.
enum Row {
/// Finished row frame of auto or relative row.
Frame(Frame),
/// Fractional row with y index.
Fr(Fr, usize),
}
impl<'a, 'v> GridLayouter<'a, 'v> {
/// Create a new grid layouter.
///
/// This prepares grid layout by unifying content and gutter tracks.
fn new(
vt: &'a mut Vt<'v>,
tracks: Axes<&[TrackSizing]>,
gutter: Axes<&[TrackSizing]>,
cells: &'a [Content],
regions: Regions<'a>,
styles: StyleChain<'a>,
) -> Self {
let mut cols = vec![];
let mut rows = vec![];
// Number of content columns: Always at least one.
let c = tracks.x.len().max(1);
// Number of content rows: At least as many as given, but also at least
// as many as needed to place each item.
let r = {
let len = cells.len();
let given = tracks.y.len();
let needed = len / c + (len % c).clamp(0, 1);
given.max(needed)
};
let auto = TrackSizing::Auto;
let zero = TrackSizing::Relative(Rel::zero());
let get_or = |tracks: &[_], idx, default| {
tracks.get(idx).or(tracks.last()).copied().unwrap_or(default)
};
// Collect content and gutter columns.
for x in 0..c {
cols.push(get_or(tracks.x, x, auto));
cols.push(get_or(gutter.x, x, zero));
}
// Collect content and gutter rows.
for y in 0..r {
rows.push(get_or(tracks.y, y, auto));
rows.push(get_or(gutter.y, y, zero));
}
// Remove superfluous gutter tracks.
cols.pop();
rows.pop();
let full = regions.first.y;
let rcols = vec![Abs::zero(); cols.len()];
let lrows = vec![];
// We use the regions for auto row measurement. Since at that moment,
// columns are already sized, we can enable horizontal expansion.
let mut regions = regions.clone();
regions.expand = Axes::new(true, false);
Self {
vt,
cells,
cols,
rows,
regions,
styles,
rcols,
lrows,
full,
used: Size::zero(),
fr: Fr::zero(),
finished: vec![],
}
}
/// Determines the columns sizes and then layouts the grid row-by-row.
fn layout(mut self) -> SourceResult<Fragment> {
self.measure_columns()?;
for y in 0..self.rows.len() {
// Skip to next region if current one is full, but only for content
// rows, not for gutter rows.
if y % 2 == 0 && self.regions.is_full() {
self.finish_region()?;
}
match self.rows[y] {
TrackSizing::Auto => self.layout_auto_row(y)?,
TrackSizing::Relative(v) => self.layout_relative_row(v, y)?,
TrackSizing::Fractional(v) => {
self.lrows.push(Row::Fr(v, y));
self.fr += v;
}
}
}
self.finish_region()?;
Ok(Fragment::frames(self.finished))
}
/// Determine all column sizes.
fn measure_columns(&mut self) -> SourceResult<()> {
// Sum of sizes of resolved relative tracks.
let mut rel = Abs::zero();
// Sum of fractions of all fractional tracks.
let mut fr = Fr::zero();
// Resolve the size of all relative columns and compute the sum of all
// fractional tracks.
for (&col, rcol) in self.cols.iter().zip(&mut self.rcols) {
match col {
TrackSizing::Auto => {}
TrackSizing::Relative(v) => {
let resolved =
v.resolve(self.styles).relative_to(self.regions.base.x);
*rcol = resolved;
rel += resolved;
}
TrackSizing::Fractional(v) => fr += v,
}
}
// Size that is not used by fixed-size columns.
let available = self.regions.first.x - rel;
if available >= Abs::zero() {
// Determine size of auto columns.
let (auto, count) = self.measure_auto_columns(available)?;
// If there is remaining space, distribute it to fractional columns,
// otherwise shrink auto columns.
let remaining = available - auto;
if remaining >= Abs::zero() {
self.grow_fractional_columns(remaining, fr);
} else {
self.shrink_auto_columns(available, count);
}
}
// Sum up the resolved column sizes once here.
self.used.x = self.rcols.iter().sum();
Ok(())
}
/// Measure the size that is available to auto columns.
fn measure_auto_columns(&mut self, available: Abs) -> SourceResult<(Abs, usize)> {
let mut auto = Abs::zero();
let mut count = 0;
// Determine size of auto columns by laying out all cells in those
// columns, measuring them and finding the largest one.
for (x, &col) in self.cols.iter().enumerate() {
if col != TrackSizing::Auto {
continue;
}
let mut resolved = Abs::zero();
for y in 0..self.rows.len() {
if let Some(cell) = self.cell(x, y) {
let size = Size::new(available, self.regions.base.y);
let mut pod =
Regions::one(size, self.regions.base, Axes::splat(false));
// For relative rows, we can already resolve the correct
// base, for auto it's already correct and for fr we could
// only guess anyway.
if let TrackSizing::Relative(v) = self.rows[y] {
pod.base.y =
v.resolve(self.styles).relative_to(self.regions.base.y);
}
let frame = cell.layout(self.vt, self.styles, pod)?.into_frame();
resolved.set_max(frame.width());
}
}
self.rcols[x] = resolved;
auto += resolved;
count += 1;
}
Ok((auto, count))
}
/// Distribute remaining space to fractional columns.
fn grow_fractional_columns(&mut self, remaining: Abs, fr: Fr) {
if fr.is_zero() {
return;
}
for (&col, rcol) in self.cols.iter().zip(&mut self.rcols) {
if let TrackSizing::Fractional(v) = col {
*rcol = v.share(fr, remaining);
}
}
}
/// Redistribute space to auto columns so that each gets a fair share.
fn shrink_auto_columns(&mut self, available: Abs, count: usize) {
let mut last;
let mut fair = -Abs::inf();
let mut redistribute = available;
let mut overlarge = count;
let mut changed = true;
// Iteratively remove columns that don't need to be shrunk.
while changed && overlarge > 0 {
changed = false;
last = fair;
fair = redistribute / (overlarge as f64);
for (&col, &rcol) in self.cols.iter().zip(&self.rcols) {
// Remove an auto column if it is not overlarge (rcol <= fair),
// but also hasn't already been removed (rcol > last).
if col == TrackSizing::Auto && rcol <= fair && rcol > last {
redistribute -= rcol;
overlarge -= 1;
changed = true;
}
}
}
// Redistribute space fairly among overlarge columns.
for (&col, rcol) in self.cols.iter().zip(&mut self.rcols) {
if col == TrackSizing::Auto && *rcol > fair {
*rcol = fair;
}
}
}
/// Layout a row with automatic height. Such a row may break across multiple
/// regions.
fn layout_auto_row(&mut self, y: usize) -> SourceResult<()> {
let mut resolved: Vec<Abs> = vec![];
// Determine the size for each region of the row.
for (x, &rcol) in self.rcols.iter().enumerate() {
if let Some(cell) = self.cell(x, y) {
let mut pod = self.regions.clone();
pod.first.x = rcol;
pod.base.x = rcol;
// All widths should be `rcol` except the base for auto columns.
if self.cols[x] == TrackSizing::Auto {
pod.base.x = self.regions.base.x;
}
let mut sizes = cell
.layout(self.vt, self.styles, pod)?
.into_iter()
.map(|frame| frame.height());
// For each region, we want to know the maximum height any
// column requires.
for (target, size) in resolved.iter_mut().zip(&mut sizes) {
target.set_max(size);
}
// New heights are maximal by virtue of being new. Note that
// this extend only uses the rest of the sizes iterator.
resolved.extend(sizes);
}
}
// Nothing to layout.
if resolved.is_empty() {
return Ok(());
}
// Layout into a single region.
if let &[first] = resolved.as_slice() {
let frame = self.layout_single_row(first, y)?;
self.push_row(frame);
return Ok(());
}
// Expand all but the last region if the space is not
// eaten up by any fr rows.
if self.fr.is_zero() {
let len = resolved.len();
for (region, target) in self.regions.iter().zip(&mut resolved[..len - 1]) {
target.set_max(region.y);
}
}
// Layout into multiple regions.
let fragment = self.layout_multi_row(&resolved, y)?;
let len = fragment.len();
for (i, frame) in fragment.into_iter().enumerate() {
self.push_row(frame);
if i + 1 < len {
self.finish_region()?;
}
}
Ok(())
}
/// Layout a row with relative height. Such a row cannot break across
/// multiple regions, but it may force a region break.
fn layout_relative_row(&mut self, v: Rel<Length>, y: usize) -> SourceResult<()> {
let resolved = v.resolve(self.styles).relative_to(self.regions.base.y);
let frame = self.layout_single_row(resolved, y)?;
// Skip to fitting region.
let height = frame.height();
while !self.regions.first.y.fits(height) && !self.regions.in_last() {
self.finish_region()?;
// Don't skip multiple regions for gutter and don't push a row.
if y % 2 == 1 {
return Ok(());
}
}
self.push_row(frame);
Ok(())
}
/// Layout a row with fixed height and return its frame.
fn layout_single_row(&mut self, height: Abs, y: usize) -> SourceResult<Frame> {
let mut output = Frame::new(Size::new(self.used.x, height));
let mut pos = Point::zero();
for (x, &rcol) in self.rcols.iter().enumerate() {
if let Some(cell) = self.cell(x, y) {
let size = Size::new(rcol, height);
// Set the base to the region's base for auto rows and to the
// size for relative and fractional rows.
let base = Axes::new(self.cols[x], self.rows[y])
.map(|s| s == TrackSizing::Auto)
.select(self.regions.base, size);
let pod = Regions::one(size, base, Axes::splat(true));
let frame = cell.layout(self.vt, self.styles, pod)?.into_frame();
output.push_frame(pos, frame);
}
pos.x += rcol;
}
Ok(output)
}
/// Layout a row spanning multiple regions.
fn layout_multi_row(&mut self, heights: &[Abs], y: usize) -> SourceResult<Fragment> {
// Prepare frames.
let mut outputs: Vec<_> = heights
.iter()
.map(|&h| Frame::new(Size::new(self.used.x, h)))
.collect();
// Prepare regions.
let size = Size::new(self.used.x, heights[0]);
let mut pod = Regions::one(size, self.regions.base, Axes::splat(true));
pod.backlog = &heights[1..];
// Layout the row.
let mut pos = Point::zero();
for (x, &rcol) in self.rcols.iter().enumerate() {
if let Some(cell) = self.cell(x, y) {
pod.first.x = rcol;
pod.base.x = rcol;
// All widths should be `rcol` except the base for auto columns.
if self.cols[x] == TrackSizing::Auto {
pod.base.x = self.regions.base.x;
}
// Push the layouted frames into the individual output frames.
let fragment = cell.layout(self.vt, self.styles, pod)?;
for (output, frame) in outputs.iter_mut().zip(fragment) {
output.push_frame(pos, frame);
}
}
pos.x += rcol;
}
Ok(Fragment::frames(outputs))
}
/// Push a row frame into the current region.
fn push_row(&mut self, frame: Frame) {
self.regions.first.y -= frame.height();
self.used.y += frame.height();
self.lrows.push(Row::Frame(frame));
}
/// Finish rows for one region.
fn finish_region(&mut self) -> SourceResult<()> {
// Determine the size of the grid in this region, expanding fully if
// there are fr rows.
let mut size = self.used;
if self.fr.get() > 0.0 && self.full.is_finite() {
size.y = self.full;
}
// The frame for the region.
let mut output = Frame::new(size);
let mut pos = Point::zero();
// Place finished rows and layout fractional rows.
for row in std::mem::take(&mut self.lrows) {
let frame = match row {
Row::Frame(frame) => frame,
Row::Fr(v, y) => {
let remaining = self.full - self.used.y;
let height = v.share(self.fr, remaining);
self.layout_single_row(height, y)?
}
};
let height = frame.height();
output.push_frame(pos, frame);
pos.y += height;
}
self.finished.push(output);
self.regions.next();
self.full = self.regions.first.y;
self.used.y = Abs::zero();
self.fr = Fr::zero();
Ok(())
}
/// Get the content of the cell in column `x` and row `y`.
///
/// Returns `None` if it's a gutter cell.
#[track_caller]
fn cell(&self, x: usize, y: usize) -> Option<&'a Content> {
assert!(x < self.cols.len());
assert!(y < self.rows.len());
// Even columns and rows are children, odd ones are gutter.
if x % 2 == 0 && y % 2 == 0 {
let c = 1 + self.cols.len() / 2;
self.cells.get((y / 2) * c + x / 2)
} else {
None
}
}
}