2024-05-13 15:25:43 +00:00

202 lines
4.4 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use std::cmp::Ordering;
use std::fmt::{self, Debug, Formatter};
use std::hash::{Hash, Hasher};
use std::iter::Sum;
use std::ops::{
Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign,
};
use crate::Numeric;
/// A 64-bit float that implements `Eq`, `Ord` and `Hash`.
///
/// Panics if it's `NaN` during any of those operations.
#[derive(Default, Copy, Clone)]
pub struct Scalar(f64);
impl Scalar {
/// The scalar containing `0.0`.
pub const ZERO: Self = Self(0.0);
/// The scalar containing `1.0`.
pub const ONE: Self = Self(1.0);
/// The scalar containing `f64::INFINITY`.
pub const INFINITY: Self = Self(f64::INFINITY);
/// Creates a [`Scalar`] with the given value.
///
/// If the value is NaN, then it is set to `0.0` in the result.
pub const fn new(x: f64) -> Self {
Self(if is_nan(x) { 0.0 } else { x })
}
/// Gets the value of this [`Scalar`].
pub const fn get(self) -> f64 {
self.0
}
}
// We have to detect NaNs this way since `f64::is_nan` isnt const
// on stable yet:
// ([tracking issue](https://github.com/rust-lang/rust/issues/57241))
#[allow(clippy::unusual_byte_groupings)]
const fn is_nan(x: f64) -> bool {
// Safety: all bit patterns are valid for u64, and f64 has no padding bits.
// We cannot use `f64::to_bits` because it is not const.
let x_bits = unsafe { std::mem::transmute::<f64, u64>(x) };
(x_bits << 1 >> (64 - 12 + 1)) == 0b0_111_1111_1111 && (x_bits << 12) != 0
}
impl Numeric for Scalar {
fn zero() -> Self {
Self(0.0)
}
fn is_finite(self) -> bool {
self.0.is_finite()
}
}
impl Debug for Scalar {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
self.0.fmt(f)
}
}
impl Eq for Scalar {}
impl PartialEq for Scalar {
fn eq(&self, other: &Self) -> bool {
assert!(!self.0.is_nan() && !other.0.is_nan(), "float is NaN");
self.0 == other.0
}
}
impl PartialEq<f64> for Scalar {
fn eq(&self, other: &f64) -> bool {
self == &Self(*other)
}
}
impl Ord for Scalar {
fn cmp(&self, other: &Self) -> Ordering {
self.0.partial_cmp(&other.0).expect("float is NaN")
}
}
impl PartialOrd for Scalar {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Hash for Scalar {
fn hash<H: Hasher>(&self, state: &mut H) {
debug_assert!(!self.0.is_nan(), "float is NaN");
self.0.to_bits().hash(state);
}
}
impl From<f64> for Scalar {
fn from(float: f64) -> Self {
Self::new(float)
}
}
impl From<Scalar> for f64 {
fn from(scalar: Scalar) -> Self {
scalar.0
}
}
impl Neg for Scalar {
type Output = Self;
fn neg(self) -> Self::Output {
Self::new(-self.0)
}
}
impl<T: Into<Self>> Add<T> for Scalar {
type Output = Self;
fn add(self, rhs: T) -> Self::Output {
Self::new(self.0 + rhs.into().0)
}
}
impl<T: Into<Self>> AddAssign<T> for Scalar {
fn add_assign(&mut self, rhs: T) {
*self = *self + rhs.into();
}
}
impl<T: Into<Self>> Sub<T> for Scalar {
type Output = Self;
fn sub(self, rhs: T) -> Self::Output {
Self::new(self.0 - rhs.into().0)
}
}
impl<T: Into<Self>> SubAssign<T> for Scalar {
fn sub_assign(&mut self, rhs: T) {
*self = *self - rhs.into();
}
}
impl<T: Into<Self>> Mul<T> for Scalar {
type Output = Self;
fn mul(self, rhs: T) -> Self::Output {
Self::new(self.0 * rhs.into().0)
}
}
impl<T: Into<Self>> MulAssign<T> for Scalar {
fn mul_assign(&mut self, rhs: T) {
*self = *self * rhs.into();
}
}
impl<T: Into<Self>> Div<T> for Scalar {
type Output = Self;
fn div(self, rhs: T) -> Self::Output {
Self::new(self.0 / rhs.into().0)
}
}
impl<T: Into<Self>> DivAssign<T> for Scalar {
fn div_assign(&mut self, rhs: T) {
*self = *self / rhs.into();
}
}
impl<T: Into<Self>> Rem<T> for Scalar {
type Output = Self;
fn rem(self, rhs: T) -> Self::Output {
Self::new(self.0 % rhs.into().0)
}
}
impl<T: Into<Self>> RemAssign<T> for Scalar {
fn rem_assign(&mut self, rhs: T) {
*self = *self % rhs.into();
}
}
impl Sum for Scalar {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
Self::new(iter.map(|s| s.0).sum())
}
}
impl<'a> Sum<&'a Self> for Scalar {
fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
Self::new(iter.map(|s| s.0).sum())
}
}