typst/src/eval/mod.rs
Laurenz e023bf2ac9 Module loading system
Detects cyclic imports and loads each module only once per compilation.
2021-05-31 22:33:40 +02:00

710 lines
21 KiB
Rust

//! Evaluation of syntax trees.
#[macro_use]
mod value;
mod capture;
mod ops;
mod scope;
pub use capture::*;
pub use scope::*;
pub use value::*;
use std::collections::HashMap;
use std::path::{Path, PathBuf};
use std::rc::Rc;
use crate::cache::Cache;
use crate::color::Color;
use crate::diag::{Diag, DiagSet, Pass};
use crate::geom::{Angle, Length, Relative};
use crate::loading::{FileHash, Loader};
use crate::parse::parse;
use crate::syntax::visit::Visit;
use crate::syntax::*;
/// Evaluated a parsed source file into a module.
///
/// The `path` should point to the source file for the `tree` and is used to
/// resolve relative path names.
///
/// The `scope` consists of the base definitions that are present from the
/// beginning (typically, the standard library).
pub fn eval(
loader: &mut dyn Loader,
cache: &mut Cache,
path: &Path,
tree: Rc<Tree>,
base: &Scope,
) -> Pass<Module> {
let mut ctx = EvalContext::new(loader, cache, path, base);
let map = tree.eval(&mut ctx);
let module = Module {
scope: ctx.scopes.top,
template: vec![TemplateNode::Tree { tree, map }],
};
Pass::new(module, ctx.diags)
}
/// An evaluated module, ready for importing or execution.
#[derive(Debug, Clone, PartialEq)]
pub struct Module {
/// The top-level definitions that were bound in this module.
pub scope: Scope,
/// The template defined by this module.
pub template: TemplateValue,
}
/// The context for evaluation.
pub struct EvalContext<'a> {
/// The loader from which resources (files and images) are loaded.
pub loader: &'a mut dyn Loader,
/// A cache for loaded resources.
pub cache: &'a mut Cache,
/// The active scopes.
pub scopes: Scopes<'a>,
/// Evaluation diagnostics.
pub diags: DiagSet,
/// The stack of imported files that led to evaluation of the current file.
pub route: Vec<FileHash>,
/// The location of the currently evaluated file.
pub path: PathBuf,
/// A map of loaded module.
pub modules: HashMap<FileHash, Module>,
}
impl<'a> EvalContext<'a> {
/// Create a new evaluation context with a base scope.
pub fn new(
loader: &'a mut dyn Loader,
cache: &'a mut Cache,
path: &Path,
base: &'a Scope,
) -> Self {
let mut route = vec![];
if let Some(hash) = loader.resolve(path) {
route.push(hash);
}
Self {
loader,
cache,
scopes: Scopes::with_base(Some(base)),
diags: DiagSet::new(),
route,
path: path.to_owned(),
modules: HashMap::new(),
}
}
/// Resolve a path relative to the current file.
///
/// Generates an error if the file is not found.
pub fn resolve(&mut self, path: &str, span: Span) -> Option<(PathBuf, FileHash)> {
let dir = self.path.parent().expect("location is a file");
let path = dir.join(path);
match self.loader.resolve(&path) {
Some(hash) => Some((path, hash)),
None => {
self.diag(error!(span, "file not found"));
None
}
}
}
/// Process an import of a module relative to the current location.
pub fn import(&mut self, path: &str, span: Span) -> Option<FileHash> {
let (resolved, hash) = self.resolve(path, span)?;
// Prevent cycling importing.
if self.route.contains(&hash) {
self.diag(error!(span, "cyclic import"));
return None;
}
if self.modules.get(&hash).is_some() {
return Some(hash);
}
let buffer = self.loader.load_file(&resolved).or_else(|| {
self.diag(error!(span, "failed to load file"));
None
})?;
let string = std::str::from_utf8(&buffer).ok().or_else(|| {
self.diag(error!(span, "file is not valid utf-8"));
None
})?;
// Prepare the new context.
self.route.push(hash);
let new_scopes = Scopes::with_base(self.scopes.base);
let old_scopes = std::mem::replace(&mut self.scopes, new_scopes);
// Evaluate the module.
let tree = Rc::new(parse(string).output);
let map = tree.eval(self);
// Restore the old context.
let new_scopes = std::mem::replace(&mut self.scopes, old_scopes);
self.route.pop();
self.modules.insert(hash, Module {
scope: new_scopes.top,
template: vec![TemplateNode::Tree { tree, map }],
});
Some(hash)
}
/// Add a diagnostic.
pub fn diag(&mut self, diag: Diag) {
self.diags.insert(diag);
}
/// Cast a value to a type and diagnose a possible error / warning.
pub fn cast<T>(&mut self, value: Value, span: Span) -> Option<T>
where
T: Cast<Value>,
{
if value == Value::Error {
return None;
}
match T::cast(value) {
CastResult::Ok(t) => Some(t),
CastResult::Warn(t, m) => {
self.diag(warning!(span, "{}", m));
Some(t)
}
CastResult::Err(value) => {
self.diag(error!(
span,
"expected {}, found {}",
T::TYPE_NAME,
value.type_name(),
));
None
}
}
}
}
/// Evaluate an expression.
pub trait Eval {
/// The output of evaluating the expression.
type Output;
/// Evaluate the expression to the output value.
fn eval(&self, ctx: &mut EvalContext) -> Self::Output;
}
impl Eval for Tree {
type Output = NodeMap;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let mut map = NodeMap::new();
for node in self {
let value = if let Some(call) = node.desugar() {
call.eval(ctx)
} else if let Node::Expr(expr) = node {
expr.eval(ctx)
} else {
continue;
};
map.insert(node as *const _, value);
}
map
}
}
impl Eval for Expr {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
match *self {
Self::None(_) => Value::None,
Self::Bool(_, v) => Value::Bool(v),
Self::Int(_, v) => Value::Int(v),
Self::Float(_, v) => Value::Float(v),
Self::Length(_, v, unit) => Value::Length(Length::with_unit(v, unit)),
Self::Angle(_, v, unit) => Value::Angle(Angle::with_unit(v, unit)),
Self::Percent(_, v) => Value::Relative(Relative::new(v / 100.0)),
Self::Color(_, v) => Value::Color(Color::Rgba(v)),
Self::Str(_, ref v) => Value::Str(v.clone()),
Self::Ident(ref v) => match ctx.scopes.get(&v) {
Some(slot) => slot.borrow().clone(),
None => {
ctx.diag(error!(v.span, "unknown variable"));
Value::Error
}
},
Self::Array(ref v) => Value::Array(v.eval(ctx)),
Self::Dict(ref v) => Value::Dict(v.eval(ctx)),
Self::Template(ref v) => Value::Template(vec![v.eval(ctx)]),
Self::Group(ref v) => v.eval(ctx),
Self::Block(ref v) => v.eval(ctx),
Self::Call(ref v) => v.eval(ctx),
Self::Closure(ref v) => v.eval(ctx),
Self::Unary(ref v) => v.eval(ctx),
Self::Binary(ref v) => v.eval(ctx),
Self::Let(ref v) => v.eval(ctx),
Self::If(ref v) => v.eval(ctx),
Self::While(ref v) => v.eval(ctx),
Self::For(ref v) => v.eval(ctx),
Self::Import(ref v) => v.eval(ctx),
Self::Include(ref v) => v.eval(ctx),
}
}
}
impl Eval for ArrayExpr {
type Output = ArrayValue;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
self.items.iter().map(|expr| expr.eval(ctx)).collect()
}
}
impl Eval for DictExpr {
type Output = DictValue;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
self.items
.iter()
.map(|Named { name, expr }| (name.string.clone(), expr.eval(ctx)))
.collect()
}
}
impl Eval for TemplateExpr {
type Output = TemplateNode;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let tree = Rc::clone(&self.tree);
let map = self.tree.eval(ctx);
TemplateNode::Tree { tree, map }
}
}
impl Eval for GroupExpr {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
self.expr.eval(ctx)
}
}
impl Eval for BlockExpr {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
if self.scoping {
ctx.scopes.enter();
}
let mut output = Value::None;
for expr in &self.exprs {
output = expr.eval(ctx);
}
if self.scoping {
ctx.scopes.exit();
}
output
}
}
impl Eval for UnaryExpr {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let value = self.expr.eval(ctx);
if value == Value::Error {
return Value::Error;
}
let ty = value.type_name();
let out = match self.op {
UnOp::Pos => ops::pos(value),
UnOp::Neg => ops::neg(value),
UnOp::Not => ops::not(value),
};
if out == Value::Error {
ctx.diag(error!(
self.span,
"cannot apply '{}' to {}",
self.op.as_str(),
ty,
));
}
out
}
}
impl Eval for BinaryExpr {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
match self.op {
BinOp::Add => self.apply(ctx, ops::add),
BinOp::Sub => self.apply(ctx, ops::sub),
BinOp::Mul => self.apply(ctx, ops::mul),
BinOp::Div => self.apply(ctx, ops::div),
BinOp::And => self.apply(ctx, ops::and),
BinOp::Or => self.apply(ctx, ops::or),
BinOp::Eq => self.apply(ctx, ops::eq),
BinOp::Neq => self.apply(ctx, ops::neq),
BinOp::Lt => self.apply(ctx, ops::lt),
BinOp::Leq => self.apply(ctx, ops::leq),
BinOp::Gt => self.apply(ctx, ops::gt),
BinOp::Geq => self.apply(ctx, ops::geq),
BinOp::Assign => self.assign(ctx, |_, b| b),
BinOp::AddAssign => self.assign(ctx, ops::add),
BinOp::SubAssign => self.assign(ctx, ops::sub),
BinOp::MulAssign => self.assign(ctx, ops::mul),
BinOp::DivAssign => self.assign(ctx, ops::div),
}
}
}
impl BinaryExpr {
/// Apply a basic binary operation.
fn apply<F>(&self, ctx: &mut EvalContext, op: F) -> Value
where
F: FnOnce(Value, Value) -> Value,
{
// Short-circuit boolean operations.
let lhs = self.lhs.eval(ctx);
match (self.op, &lhs) {
(BinOp::And, Value::Bool(false)) => return lhs,
(BinOp::Or, Value::Bool(true)) => return lhs,
_ => {}
}
let rhs = self.rhs.eval(ctx);
if lhs == Value::Error || rhs == Value::Error {
return Value::Error;
}
// Save type names before we consume the values in case of error.
let types = (lhs.type_name(), rhs.type_name());
let out = op(lhs, rhs);
if out == Value::Error {
self.error(ctx, types);
}
out
}
/// Apply an assignment operation.
fn assign<F>(&self, ctx: &mut EvalContext, op: F) -> Value
where
F: FnOnce(Value, Value) -> Value,
{
let slot = if let Expr::Ident(id) = self.lhs.as_ref() {
match ctx.scopes.get(id) {
Some(slot) => Rc::clone(slot),
None => {
ctx.diag(error!(self.lhs.span(), "unknown variable"));
return Value::Error;
}
}
} else {
ctx.diag(error!(self.lhs.span(), "cannot assign to this expression"));
return Value::Error;
};
let rhs = self.rhs.eval(ctx);
let mut mutable = match slot.try_borrow_mut() {
Ok(mutable) => mutable,
Err(_) => {
ctx.diag(error!(self.lhs.span(), "cannot assign to a constant"));
return Value::Error;
}
};
let lhs = std::mem::take(&mut *mutable);
let types = (lhs.type_name(), rhs.type_name());
*mutable = op(lhs, rhs);
if *mutable == Value::Error {
self.error(ctx, types);
return Value::Error;
}
Value::None
}
fn error(&self, ctx: &mut EvalContext, (a, b): (&str, &str)) {
ctx.diag(error!(self.span, "{}", match self.op {
BinOp::Add => format!("cannot add {} and {}", a, b),
BinOp::Sub => format!("cannot subtract {1} from {0}", a, b),
BinOp::Mul => format!("cannot multiply {} with {}", a, b),
BinOp::Div => format!("cannot divide {} by {}", a, b),
_ => format!("cannot apply '{}' to {} and {}", self.op.as_str(), a, b),
}));
}
}
impl Eval for CallExpr {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let callee = self.callee.eval(ctx);
if let Some(func) = ctx.cast::<FuncValue>(callee, self.callee.span()) {
let mut args = self.args.eval(ctx);
let returned = func(ctx, &mut args);
args.finish(ctx);
returned
} else {
Value::Error
}
}
}
impl Eval for CallArgs {
type Output = FuncArgs;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let items = self.items.iter().map(|arg| arg.eval(ctx)).collect();
FuncArgs { span: self.span, items }
}
}
impl Eval for CallArg {
type Output = FuncArg;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
match self {
Self::Pos(expr) => FuncArg {
name: None,
value: Spanned::new(expr.eval(ctx), expr.span()),
},
Self::Named(Named { name, expr }) => FuncArg {
name: Some(Spanned::new(name.string.clone(), name.span)),
value: Spanned::new(expr.eval(ctx), expr.span()),
},
}
}
}
impl Eval for ClosureExpr {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let params = Rc::clone(&self.params);
let body = Rc::clone(&self.body);
// Collect the captured variables.
let captured = {
let mut visitor = CapturesVisitor::new(&ctx.scopes);
visitor.visit_closure(self);
visitor.finish()
};
let name = self.name.as_ref().map(|id| id.to_string());
Value::Func(FuncValue::new(name, move |ctx, args| {
// Don't leak the scopes from the call site. Instead, we use the
// scope of captured variables we collected earlier.
let prev = std::mem::take(&mut ctx.scopes);
ctx.scopes.top = captured.clone();
for param in params.iter() {
// Set the parameter to `none` if the argument is missing.
let value =
args.eat_expect::<Value>(ctx, param.as_str()).unwrap_or_default();
ctx.scopes.def_mut(param.as_str(), value);
}
let value = body.eval(ctx);
ctx.scopes = prev;
value
}))
}
}
impl Eval for LetExpr {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let value = match &self.init {
Some(expr) => expr.eval(ctx),
None => Value::None,
};
ctx.scopes.def_mut(self.binding.as_str(), value);
Value::None
}
}
impl Eval for IfExpr {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let condition = self.condition.eval(ctx);
if let Some(condition) = ctx.cast(condition, self.condition.span()) {
if condition {
self.if_body.eval(ctx)
} else if let Some(else_body) = &self.else_body {
else_body.eval(ctx)
} else {
Value::None
}
} else {
Value::Error
}
}
}
impl Eval for WhileExpr {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let mut output = vec![];
loop {
let condition = self.condition.eval(ctx);
if let Some(condition) = ctx.cast(condition, self.condition.span()) {
if condition {
match self.body.eval(ctx) {
Value::Template(v) => output.extend(v),
Value::Str(v) => output.push(TemplateNode::Str(v)),
Value::Error => return Value::Error,
_ => {}
}
} else {
return Value::Template(output);
}
} else {
return Value::Error;
}
}
}
}
impl Eval for ForExpr {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
macro_rules! iter {
(for ($($binding:ident => $value:ident),*) in $iter:expr) => {{
let mut output = vec![];
ctx.scopes.enter();
#[allow(unused_parens)]
for ($($value),*) in $iter {
$(ctx.scopes.def_mut($binding.as_str(), $value);)*
match self.body.eval(ctx) {
Value::Template(v) => output.extend(v),
Value::Str(v) => output.push(TemplateNode::Str(v)),
Value::Error => {
ctx.scopes.exit();
return Value::Error;
}
_ => {}
}
}
ctx.scopes.exit();
Value::Template(output)
}};
}
let iter = self.iter.eval(ctx);
match (self.pattern.clone(), iter) {
(ForPattern::Value(v), Value::Str(string)) => {
iter!(for (v => value) in string.chars().map(|c| Value::Str(c.into())))
}
(ForPattern::Value(v), Value::Array(array)) => {
iter!(for (v => value) in array.into_iter())
}
(ForPattern::KeyValue(i, v), Value::Array(array)) => {
iter!(for (i => idx, v => value) in array.into_iter().enumerate())
}
(ForPattern::Value(v), Value::Dict(dict)) => {
iter!(for (v => value) in dict.into_iter().map(|p| p.1))
}
(ForPattern::KeyValue(k, v), Value::Dict(dict)) => {
iter!(for (k => key, v => value) in dict.into_iter())
}
(ForPattern::KeyValue(_, _), Value::Str(_)) => {
ctx.diag(error!(self.pattern.span(), "mismatched pattern"));
Value::Error
}
(_, iter) => {
if iter != Value::Error {
ctx.diag(error!(
self.iter.span(),
"cannot loop over {}",
iter.type_name(),
));
}
Value::Error
}
}
}
}
impl Eval for ImportExpr {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let span = self.path.span();
let path = self.path.eval(ctx);
if let Some(path) = ctx.cast::<String>(path, span) {
if let Some(hash) = ctx.import(&path, span) {
let mut module = &ctx.modules[&hash];
match &self.imports {
Imports::Wildcard => {
for (var, slot) in module.scope.iter() {
let value = slot.borrow().clone();
ctx.scopes.def_mut(var, value);
}
}
Imports::Idents(idents) => {
for ident in idents {
if let Some(slot) = module.scope.get(&ident) {
let value = slot.borrow().clone();
ctx.scopes.def_mut(ident.as_str(), value);
} else {
ctx.diag(error!(ident.span, "unresolved import"));
module = &ctx.modules[&hash];
}
}
}
}
return Value::None;
}
}
Value::Error
}
}
impl Eval for IncludeExpr {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let span = self.path.span();
let path = self.path.eval(ctx);
if let Some(path) = ctx.cast::<String>(path, span) {
if let Some(hash) = ctx.import(&path, span) {
return Value::Template(ctx.modules[&hash].template.clone());
}
}
Value::Error
}
}