typst/src/layout/incremental.rs
2021-06-27 18:58:31 +02:00

300 lines
8.8 KiB
Rust

use std::collections::{hash_map::Entry, HashMap};
use std::ops::Deref;
use super::*;
/// Caches layouting artifacts.
#[derive(Default, Debug, Clone)]
pub struct LayoutCache {
/// Maps from node hashes to the resulting frames and regions in which the
/// frames are valid. The right hand side of the hash map is a vector of
/// results because across one or more compilations, multiple different
/// layouts of the same node may have been requested.
pub frames: HashMap<u64, Vec<FramesEntry>>,
/// In how many compilations this cache has been used.
age: usize,
}
impl LayoutCache {
/// Create a new, empty layout cache.
pub fn new() -> Self {
Self { frames: HashMap::new(), age: 0 }
}
/// Clear the cache.
pub fn clear(&mut self) {
self.frames.clear();
}
/// Amount of items in the cache.
pub fn len(&self) -> usize {
self.frames.iter().map(|(_, e)| e.len()).sum()
}
/// Retains all elements for which the closure on the level returns `true`.
pub fn retain<F>(&mut self, mut f: F)
where
F: FnMut(usize) -> bool,
{
for (_, entries) in self.frames.iter_mut() {
entries.retain(|entry| f(entry.level));
}
}
/// Prepare the cache for the next round of compilation
pub fn turnaround(&mut self) {
self.age += 1;
for entry in self.frames.iter_mut().flat_map(|(_, x)| x.iter_mut()) {
for i in 0 .. (entry.temperature.len() - 1) {
entry.temperature[i + 1] = entry.temperature[i];
}
entry.temperature[0] = 0;
entry.age += 1;
}
}
/// The amount of levels stored in the cache.
pub fn levels(&self) -> usize {
self.frames
.iter()
.flat_map(|(_, x)| x)
.map(|entry| entry.level + 1)
.max()
.unwrap_or(0)
}
/// Fetches the appropriate entry from the cache if there is any.
pub fn get(
&mut self,
hash: u64,
regions: Regions,
) -> Option<Vec<Constrained<Rc<Frame>>>> {
self.frames.get_mut(&hash).and_then(|frames| {
for frame in frames {
let res = frame.check(regions.clone());
if res.is_some() {
return res;
}
}
None
})
}
/// Inserts a new frame set into the cache.
pub fn insert(
&mut self,
hash: u64,
frames: Vec<Constrained<Rc<Frame>>>,
level: usize,
) {
let entry = FramesEntry::new(frames, level);
match self.frames.entry(hash) {
Entry::Occupied(o) => o.into_mut().push(entry),
Entry::Vacant(v) => {
v.insert(vec![entry]);
}
}
}
}
/// Cached frames from past layouting.
#[derive(Debug, Clone)]
pub struct FramesEntry {
/// The cached frames for a node.
pub frames: Vec<Constrained<Rc<Frame>>>,
/// How nested the frame was in the context is was originally appearing in.
pub level: usize,
/// For how long the element already exists.
age: usize,
/// How much the element was accessed during the last five compilations, the
/// most recent one being the first element.
temperature: [usize; 5],
}
impl FramesEntry {
/// Construct a new instance.
pub fn new(frames: Vec<Constrained<Rc<Frame>>>, level: usize) -> Self {
Self {
frames,
level,
age: 1,
temperature: [0; 5],
}
}
/// Checks if the cached [`Frame`] is valid for the given regions.
pub fn check(&mut self, mut regions: Regions) -> Option<Vec<Constrained<Rc<Frame>>>> {
for (i, frame) in self.frames.iter().enumerate() {
if (i != 0 && !regions.next()) || !frame.constraints.check(&regions) {
return None;
}
}
self.temperature[0] += 1;
Some(self.frames.clone())
}
/// Get the amount of compilation cycles this item has remained in the
/// cache.
pub fn age(&self) -> usize {
self.age
}
/// Get the amount of consecutive cycles in which this item has not
/// been used.
pub fn cooldown(&self) -> usize {
let mut cycle = 0;
for &temp in &self.temperature[.. self.age] {
if temp > 0 {
return cycle;
}
cycle += 1;
}
cycle
}
/// Whether this element was used in the last compilation cycle.
pub fn hit(&self) -> bool {
self.temperature[0] != 0
}
}
/// Describe regions that match them.
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Constraints {
/// The minimum available length in the region.
pub min: Spec<Option<Length>>,
/// The maximum available length in the region.
pub max: Spec<Option<Length>>,
/// The available length in the region.
pub exact: Spec<Option<Length>>,
/// The base length of the region used for relative length resolution.
pub base: Spec<Option<Length>>,
/// The expand settings of the region.
pub expand: Spec<bool>,
}
impl Constraints {
/// Create a new region constraint.
pub fn new(expand: Spec<bool>) -> Self {
Self {
min: Spec::default(),
max: Spec::default(),
exact: Spec::default(),
base: Spec::default(),
expand,
}
}
/// Set the appropriate base constraints for (relative) width and height
/// metrics, respectively.
pub fn set_base_using_linears(
&mut self,
size: Spec<Option<Linear>>,
regions: &Regions,
) {
// The full sizes need to be equal if there is a relative component in the sizes.
if size.horizontal.map_or(false, |l| l.is_relative()) {
self.base.horizontal = Some(regions.base.width);
}
if size.vertical.map_or(false, |l| l.is_relative()) {
self.base.vertical = Some(regions.base.height);
}
}
fn check(&self, regions: &Regions) -> bool {
if self.expand != regions.expand {
return false;
}
let base = regions.base.to_spec();
let current = regions.current.to_spec();
current.eq_by(&self.min, |x, y| y.map_or(true, |y| x.fits(y)))
&& current.eq_by(&self.max, |x, y| y.map_or(true, |y| x < &y))
&& current.eq_by(&self.exact, |x, y| y.map_or(true, |y| x.approx_eq(y)))
&& base.eq_by(&self.base, |x, y| y.map_or(true, |y| x.approx_eq(y)))
}
/// Changes all constraints by adding the `size` to them if they are `Some`.
pub fn mutate(&mut self, size: Size, regions: &Regions) {
for spec in std::array::IntoIter::new([
&mut self.min,
&mut self.max,
&mut self.exact,
&mut self.base,
]) {
if let Some(horizontal) = spec.horizontal.as_mut() {
*horizontal += size.width;
}
if let Some(vertical) = spec.vertical.as_mut() {
*vertical += size.height;
}
}
let current = regions.current.to_spec();
let base = regions.base.to_spec();
self.exact.horizontal.set_if_some(current.horizontal);
self.exact.vertical.set_if_some(current.vertical);
self.base.horizontal.set_if_some(base.horizontal);
self.base.vertical.set_if_some(base.vertical);
}
}
/// Carries an item that only applies to certain regions and the constraints
/// that describe these regions.
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Constrained<T> {
pub item: T,
pub constraints: Constraints,
}
impl<T> Deref for Constrained<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
&self.item
}
}
/// Extends length-related options by providing convenience methods for setting
/// minimum and maximum lengths on them, even if they are `None`.
pub trait OptionExt {
// Sets `other` as the value if the Option is `None` or if it contains a
// value larger than `other`.
fn set_min(&mut self, other: Length);
// Sets `other` as the value if the Option is `None` or if it contains a
// value smaller than `other`.
fn set_max(&mut self, other: Length);
/// Sets `other` as the value if the Option is `Some`.
fn set_if_some(&mut self, other: Length);
}
impl OptionExt for Option<Length> {
fn set_min(&mut self, other: Length) {
match self {
Some(x) => x.set_min(other),
None => *self = Some(other),
}
}
fn set_max(&mut self, other: Length) {
match self {
Some(x) => x.set_max(other),
None => *self = Some(other),
}
}
fn set_if_some(&mut self, other: Length) {
if self.is_some() {
*self = Some(other);
}
}
}