typst/src/geom/fr.rs

109 lines
2.2 KiB
Rust

use super::*;
/// A fractional length.
#[derive(Default, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct Fractional(Scalar);
impl Fractional {
/// Takes up zero space: `0fr`.
pub const fn zero() -> Self {
Self(Scalar(0.0))
}
/// Takes up as much space as all other items with this fractional size: `1fr`.
pub const fn one() -> Self {
Self(Scalar(1.0))
}
/// Create a new fractional value.
pub const fn new(ratio: f64) -> Self {
Self(Scalar(ratio))
}
/// Get the underlying ratio.
pub const fn get(self) -> f64 {
(self.0).0
}
/// Whether the ratio is zero.
pub fn is_zero(self) -> bool {
self.0 == 0.0
}
/// The absolute value of the this fractional.
pub fn abs(self) -> Self {
Self::new(self.get().abs())
}
/// Resolve this fractionals share in the remaining space.
pub fn resolve(self, total: Self, remaining: Length) -> Length {
let ratio = self / total;
if ratio.is_finite() && remaining.is_finite() {
ratio * remaining
} else {
Length::zero()
}
}
}
impl Debug for Fractional {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}fr", round_2(self.get()))
}
}
impl Neg for Fractional {
type Output = Self;
fn neg(self) -> Self {
Self(-self.0)
}
}
impl Add for Fractional {
type Output = Self;
fn add(self, other: Self) -> Self {
Self(self.0 + other.0)
}
}
sub_impl!(Fractional - Fractional -> Fractional);
impl Mul<f64> for Fractional {
type Output = Self;
fn mul(self, other: f64) -> Self {
Self(self.0 * other)
}
}
impl Mul<Fractional> for f64 {
type Output = Fractional;
fn mul(self, other: Fractional) -> Fractional {
other * self
}
}
impl Div<f64> for Fractional {
type Output = Self;
fn div(self, other: f64) -> Self {
Self(self.0 / other)
}
}
impl Div for Fractional {
type Output = f64;
fn div(self, other: Self) -> f64 {
self.get() / other.get()
}
}
assign_impl!(Fractional += Fractional);
assign_impl!(Fractional -= Fractional);
assign_impl!(Fractional *= f64);
assign_impl!(Fractional /= f64);