typst/src/eval/func.rs
2023-03-10 21:19:50 +01:00

579 lines
18 KiB
Rust

pub use typst_macros::func;
use std::fmt::{self, Debug, Formatter};
use std::hash::{Hash, Hasher};
use std::sync::Arc;
use comemo::{Prehashed, Track, Tracked, TrackedMut};
use ecow::EcoString;
use once_cell::sync::Lazy;
use super::{
cast_to_value, Args, CastInfo, Dict, Eval, Flow, Route, Scope, Scopes, Tracer, Value,
Vm,
};
use crate::diag::{bail, SourceResult, StrResult};
use crate::model::{NodeId, Selector, StyleMap};
use crate::syntax::ast::{self, AstNode, Expr};
use crate::syntax::{SourceId, Span, SyntaxNode};
use crate::util::hash128;
use crate::World;
/// An evaluatable function.
#[derive(Clone, Hash)]
pub struct Func(Arc<Prehashed<Repr>>, Span);
/// The different kinds of function representations.
#[derive(Hash)]
enum Repr {
/// A native Rust function.
Native(NativeFunc),
/// A function for a node.
Node(NodeId),
/// A user-defined closure.
Closure(Closure),
/// A nested function with pre-applied arguments.
With(Func, Args),
}
impl Func {
/// The name of the function.
pub fn name(&self) -> Option<&str> {
match &**self.0 {
Repr::Native(native) => Some(native.info.name),
Repr::Node(node) => Some(node.info.name),
Repr::Closure(closure) => closure.name.as_deref(),
Repr::With(func, _) => func.name(),
}
}
/// Extract details the function.
pub fn info(&self) -> Option<&FuncInfo> {
match &**self.0 {
Repr::Native(native) => Some(&native.info),
Repr::Node(node) => Some(&node.info),
Repr::With(func, _) => func.info(),
_ => None,
}
}
/// The function's span.
pub fn span(&self) -> Span {
self.1
}
/// Attach a span to the function.
pub fn spanned(mut self, span: Span) -> Self {
self.1 = span;
self
}
/// The number of positional arguments this function takes, if known.
pub fn argc(&self) -> Option<usize> {
match &**self.0 {
Repr::Closure(closure) => closure.argc(),
Repr::With(wrapped, applied) => Some(wrapped.argc()?.saturating_sub(
applied.items.iter().filter(|arg| arg.name.is_none()).count(),
)),
_ => None,
}
}
/// Call the function with the given arguments.
pub fn call(&self, vm: &mut Vm, mut args: Args) -> SourceResult<Value> {
match &**self.0 {
Repr::Native(native) => {
let value = (native.func)(vm, &mut args)?;
args.finish()?;
Ok(value)
}
Repr::Node(node) => {
let value = (node.construct)(vm, &mut args)?;
args.finish()?;
Ok(Value::Content(value))
}
Repr::Closure(closure) => {
// Determine the route inside the closure.
let fresh = Route::new(closure.location);
let route =
if vm.location.is_detached() { fresh.track() } else { vm.route };
Closure::call(
self,
vm.world,
route,
TrackedMut::reborrow_mut(&mut vm.tracer),
vm.depth + 1,
args,
)
}
Repr::With(wrapped, applied) => {
args.items = applied.items.iter().cloned().chain(args.items).collect();
return wrapped.call(vm, args);
}
}
}
/// Call the function without an existing virtual machine.
pub fn call_detached(
&self,
world: Tracked<dyn World>,
args: Args,
) -> SourceResult<Value> {
let route = Route::default();
let id = SourceId::detached();
let scopes = Scopes::new(None);
let mut tracer = Tracer::default();
let mut vm = Vm::new(world, route.track(), tracer.track_mut(), id, scopes, 0);
self.call(&mut vm, args)
}
/// Apply the given arguments to the function.
pub fn with(self, args: Args) -> Self {
let span = self.1;
Self(Arc::new(Prehashed::new(Repr::With(self, args))), span)
}
/// Create a selector for this function's node type, filtering by node's
/// whose [fields](super::Content::field) match the given arguments.
pub fn where_(self, args: &mut Args) -> StrResult<Selector> {
let fields = args.to_named();
args.items.retain(|arg| arg.name.is_none());
self.select(Some(fields))
}
/// Execute the function's set rule and return the resulting style map.
pub fn set(&self, mut args: Args) -> SourceResult<StyleMap> {
Ok(match &**self.0 {
Repr::Node(node) => {
let styles = (node.set)(&mut args)?;
args.finish()?;
styles
}
_ => StyleMap::new(),
})
}
/// Create a selector for this function's node type.
pub fn select(&self, fields: Option<Dict>) -> StrResult<Selector> {
match **self.0 {
Repr::Node(id) => {
if id == item!(text_id) {
Err("to select text, please use a string or regex instead")?;
}
Ok(Selector::Node(id, fields))
}
_ => Err("this function is not selectable")?,
}
}
}
impl Debug for Func {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self.name() {
Some(name) => write!(f, "{name}"),
None => f.write_str("(..) => .."),
}
}
}
impl PartialEq for Func {
fn eq(&self, other: &Self) -> bool {
hash128(&self.0) == hash128(&other.0)
}
}
impl From<Repr> for Func {
fn from(repr: Repr) -> Self {
Self(Arc::new(Prehashed::new(repr)), Span::detached())
}
}
impl From<NodeId> for Func {
fn from(id: NodeId) -> Self {
Repr::Node(id).into()
}
}
cast_to_value! {
v: NodeId => Value::Func(v.into())
}
/// A native Rust function.
pub struct NativeFunc {
/// The function's implementation.
pub func: fn(&Vm, &mut Args) -> SourceResult<Value>,
/// Details about the function.
pub info: Lazy<FuncInfo>,
}
impl Hash for NativeFunc {
fn hash<H: Hasher>(&self, state: &mut H) {
(self.func as usize).hash(state);
}
}
impl From<NativeFunc> for Func {
fn from(native: NativeFunc) -> Self {
Repr::Native(native).into()
}
}
cast_to_value! {
v: NativeFunc => Value::Func(v.into())
}
impl<F> From<F> for Value
where
F: Fn() -> NativeFunc,
{
fn from(f: F) -> Self {
f().into()
}
}
/// Details about a function.
#[derive(Debug, Clone)]
pub struct FuncInfo {
/// The function's name.
pub name: &'static str,
/// The display name of the function.
pub display: &'static str,
/// Documentation for the function.
pub docs: &'static str,
/// Details about the function's parameters.
pub params: Vec<ParamInfo>,
/// Valid types for the return value.
pub returns: Vec<&'static str>,
/// Which category the function is part of.
pub category: &'static str,
}
impl FuncInfo {
/// Get the parameter info for a parameter with the given name
pub fn param(&self, name: &str) -> Option<&ParamInfo> {
self.params.iter().find(|param| param.name == name)
}
}
/// Describes a named parameter.
#[derive(Debug, Clone)]
pub struct ParamInfo {
/// The parameter's name.
pub name: &'static str,
/// Documentation for the parameter.
pub docs: &'static str,
/// Valid values for the parameter.
pub cast: CastInfo,
/// Is the parameter positional?
pub positional: bool,
/// Is the parameter named?
///
/// Can be true even if `positional` is true if the parameter can be given
/// in both variants.
pub named: bool,
/// Can the parameter be given any number of times?
pub variadic: bool,
/// Is the parameter required?
pub required: bool,
/// Is the parameter settable with a set rule?
pub settable: bool,
}
/// A user-defined closure.
#[derive(Hash)]
pub(super) struct Closure {
/// The source file where the closure was defined.
pub location: SourceId,
/// The name of the closure.
pub name: Option<EcoString>,
/// Captured values from outer scopes.
pub captured: Scope,
/// The parameter names and default values. Parameters with default value
/// are named parameters.
pub params: Vec<(EcoString, Option<Value>)>,
/// The name of an argument sink where remaining arguments are placed.
pub sink: Option<EcoString>,
/// The expression the closure should evaluate to.
pub body: Expr,
}
impl Closure {
/// Call the function in the context with the arguments.
#[comemo::memoize]
fn call(
this: &Func,
world: Tracked<dyn World>,
route: Tracked<Route>,
tracer: TrackedMut<Tracer>,
depth: usize,
mut args: Args,
) -> SourceResult<Value> {
let closure = match &**this.0 {
Repr::Closure(closure) => closure,
_ => panic!("`this` must be a closure"),
};
// Don't leak the scopes from the call site. Instead, we use the scope
// of captured variables we collected earlier.
let mut scopes = Scopes::new(None);
scopes.top = closure.captured.clone();
// Provide the closure itself for recursive calls.
if let Some(name) = &closure.name {
scopes.top.define(name.clone(), Value::Func(this.clone()));
}
// Parse the arguments according to the parameter list.
for (param, default) in &closure.params {
scopes.top.define(
param.clone(),
match default {
Some(default) => {
args.named::<Value>(param)?.unwrap_or_else(|| default.clone())
}
None => args.expect::<Value>(param)?,
},
);
}
// Put the remaining arguments into the sink.
if let Some(sink) = &closure.sink {
scopes.top.define(sink.clone(), args.take());
}
// Ensure all arguments have been used.
args.finish()?;
// Evaluate the body.
let mut sub = Vm::new(world, route, tracer, closure.location, scopes, depth);
let result = closure.body.eval(&mut sub);
// Handle control flow.
match sub.flow {
Some(Flow::Return(_, Some(explicit))) => return Ok(explicit),
Some(Flow::Return(_, None)) => {}
Some(flow) => bail!(flow.forbidden()),
None => {}
}
result
}
/// The number of positional arguments this function takes, if known.
fn argc(&self) -> Option<usize> {
if self.sink.is_some() {
return None;
}
Some(self.params.iter().filter(|(_, default)| default.is_none()).count())
}
}
impl From<Closure> for Func {
fn from(closure: Closure) -> Self {
Repr::Closure(closure).into()
}
}
cast_to_value! {
v: Closure => Value::Func(v.into())
}
/// A visitor that determines which variables to capture for a closure.
pub(super) struct CapturesVisitor<'a> {
external: &'a Scopes<'a>,
internal: Scopes<'a>,
captures: Scope,
}
impl<'a> CapturesVisitor<'a> {
/// Create a new visitor for the given external scopes.
pub fn new(external: &'a Scopes) -> Self {
Self {
external,
internal: Scopes::new(None),
captures: Scope::new(),
}
}
/// Return the scope of captured variables.
pub fn finish(self) -> Scope {
self.captures
}
/// Visit any node and collect all captured variables.
pub fn visit(&mut self, node: &SyntaxNode) {
match node.cast() {
// Every identifier is a potential variable that we need to capture.
// Identifiers that shouldn't count as captures because they
// actually bind a new name are handled below (individually through
// the expressions that contain them).
Some(ast::Expr::Ident(ident)) => self.capture(ident),
Some(ast::Expr::MathIdent(ident)) => self.capture_in_math(ident),
// Code and content blocks create a scope.
Some(ast::Expr::Code(_) | ast::Expr::Content(_)) => {
self.internal.enter();
for child in node.children() {
self.visit(child);
}
self.internal.exit();
}
// A closure contains parameter bindings, which are bound before the
// body is evaluated. Care must be taken so that the default values
// of named parameters cannot access previous parameter bindings.
Some(ast::Expr::Closure(expr)) => {
for param in expr.params() {
if let ast::Param::Named(named) = param {
self.visit(named.expr().as_untyped());
}
}
self.internal.enter();
if let Some(name) = expr.name() {
self.bind(name);
}
for param in expr.params() {
match param {
ast::Param::Pos(ident) => self.bind(ident),
ast::Param::Named(named) => self.bind(named.name()),
ast::Param::Sink(ident) => self.bind(ident),
}
}
self.visit(expr.body().as_untyped());
self.internal.exit();
}
// A let expression contains a binding, but that binding is only
// active after the body is evaluated.
Some(ast::Expr::Let(expr)) => {
if let Some(init) = expr.init() {
self.visit(init.as_untyped());
}
self.bind(expr.binding());
}
// A for loop contains one or two bindings in its pattern. These are
// active after the iterable is evaluated but before the body is
// evaluated.
Some(ast::Expr::For(expr)) => {
self.visit(expr.iter().as_untyped());
self.internal.enter();
let pattern = expr.pattern();
if let Some(key) = pattern.key() {
self.bind(key);
}
self.bind(pattern.value());
self.visit(expr.body().as_untyped());
self.internal.exit();
}
// An import contains items, but these are active only after the
// path is evaluated.
Some(ast::Expr::Import(expr)) => {
self.visit(expr.source().as_untyped());
if let Some(ast::Imports::Items(items)) = expr.imports() {
for item in items {
self.bind(item);
}
}
}
// Everything else is traversed from left to right.
_ => {
for child in node.children() {
self.visit(child);
}
}
}
}
/// Bind a new internal variable.
fn bind(&mut self, ident: ast::Ident) {
self.internal.top.define(ident.take(), Value::None);
}
/// Capture a variable if it isn't internal.
fn capture(&mut self, ident: ast::Ident) {
if self.internal.get(&ident).is_err() {
if let Ok(value) = self.external.get(&ident) {
self.captures.define_captured(ident.take(), value.clone());
}
}
}
/// Capture a variable in math mode if it isn't internal.
fn capture_in_math(&mut self, ident: ast::MathIdent) {
if self.internal.get(&ident).is_err() {
if let Ok(value) = self.external.get_in_math(&ident) {
self.captures.define_captured(ident.take(), value.clone());
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::syntax::parse;
#[track_caller]
fn test(text: &str, result: &[&str]) {
let mut scopes = Scopes::new(None);
scopes.top.define("f", 0);
scopes.top.define("x", 0);
scopes.top.define("y", 0);
scopes.top.define("z", 0);
let mut visitor = CapturesVisitor::new(&scopes);
let root = parse(text);
visitor.visit(&root);
let captures = visitor.finish();
let mut names: Vec<_> = captures.iter().map(|(k, _)| k).collect();
names.sort();
assert_eq!(names, result);
}
#[test]
fn test_captures() {
// Let binding and function definition.
test("#let x = x", &["x"]);
test("#let x; #(x + y)", &["y"]);
test("#let f(x, y) = x + y", &[]);
test("#let f(x, y) = f", &[]);
test("#let f = (x, y) => f", &["f"]);
// Closure with different kinds of params.
test("#((x, y) => x + z)", &["z"]);
test("#((x: y, z) => x + z)", &["y"]);
test("#((..x) => x + y)", &["y"]);
test("#((x, y: x + z) => x + y)", &["x", "z"]);
test("#{x => x; x}", &["x"]);
// Show rule.
test("#show y: x => x", &["y"]);
test("#show y: x => x + z", &["y", "z"]);
test("#show x: x => x", &["x"]);
// For loop.
test("#for x in y { x + z }", &["y", "z"]);
test("#for x, y in y { x + y }", &["y"]);
test("#for x in y {} #x", &["x", "y"]);
// Import.
test("#import z: x, y", &["z"]);
test("#import x + y: x, y, z", &["x", "y"]);
// Blocks.
test("#{ let x = 1; { let y = 2; y }; x + y }", &["y"]);
test("#[#let x = 1]#x", &["x"]);
}
}