typst/src/layout/par.rs
2021-06-27 18:06:39 +02:00

625 lines
21 KiB
Rust

use std::fmt::{self, Debug, Formatter};
use std::rc::Rc;
use unicode_bidi::{BidiInfo, Level};
use xi_unicode::LineBreakIterator;
use super::*;
use crate::exec::FontState;
use crate::util::{RangeExt, SliceExt};
type Range = std::ops::Range<usize>;
/// A node that arranges its children into a paragraph.
#[derive(Debug, Clone, PartialEq, Hash)]
pub struct ParNode {
/// The inline direction of this paragraph.
pub dir: Dir,
/// The spacing to insert between each line.
pub line_spacing: Length,
/// The nodes to be arranged in a paragraph.
pub children: Vec<ParChild>,
}
/// A child of a paragraph node.
#[derive(Clone, PartialEq, Hash)]
pub enum ParChild {
/// Spacing between other nodes.
Spacing(Length),
/// A run of text and how to align it in its line.
Text(String, Align, Rc<FontState>),
/// Any child node and how to align it in its line.
Any(AnyNode, Align),
}
impl Layout for ParNode {
fn layout(
&self,
ctx: &mut LayoutContext,
regions: &Regions,
) -> Vec<Constrained<Rc<Frame>>> {
// Collect all text into one string used for BiDi analysis.
let text = self.collect_text();
// Find out the BiDi embedding levels.
let bidi = BidiInfo::new(&text, Level::from_dir(self.dir));
// Prepare paragraph layout by bulding a representation on which we can
// do line breaking without layouting each and every line from scratch.
let layouter = ParLayouter::new(self, ctx, regions, bidi);
// Find suitable linebreaks.
layouter.layout(ctx, regions.clone())
}
}
impl ParNode {
/// Concatenate all text in the paragraph into one string, replacing spacing
/// with a space character and other non-text nodes with the object
/// replacement character. Returns the full text alongside the range each
/// child spans in the text.
fn collect_text(&self) -> String {
let mut text = String::new();
for string in self.strings() {
text.push_str(string);
}
text
}
/// The range of each item in the collected text.
fn ranges(&self) -> impl Iterator<Item = Range> + '_ {
let mut cursor = 0;
self.strings().map(move |string| {
let start = cursor;
cursor += string.len();
start .. cursor
})
}
/// The string representation of each child.
fn strings(&self) -> impl Iterator<Item = &str> {
self.children.iter().map(|child| match child {
ParChild::Spacing(_) => " ",
ParChild::Text(ref piece, _, _) => piece,
ParChild::Any(_, _) => "\u{FFFC}",
})
}
}
impl From<ParNode> for AnyNode {
fn from(par: ParNode) -> Self {
Self::new(par)
}
}
impl Debug for ParChild {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
Self::Spacing(amount) => write!(f, "Spacing({:?})", amount),
Self::Text(text, align, _) => write!(f, "Text({:?}, {:?})", text, align),
Self::Any(any, align) => {
f.debug_tuple("Any").field(any).field(align).finish()
}
}
}
}
/// A paragraph representation in which children are already layouted and text
/// is separated into shapable runs.
struct ParLayouter<'a> {
/// The top-level direction.
dir: Dir,
/// The line spacing.
line_spacing: Length,
/// Bidirectional text embedding levels for the paragraph.
bidi: BidiInfo<'a>,
/// Layouted children and separated text runs.
items: Vec<ParItem<'a>>,
/// The ranges of the items in `bidi.text`.
ranges: Vec<Range>,
}
impl<'a> ParLayouter<'a> {
/// Prepare initial shaped text and layouted children.
fn new(
par: &'a ParNode,
ctx: &mut LayoutContext,
regions: &Regions,
bidi: BidiInfo<'a>,
) -> Self {
// Prepare an iterator over each child an the range it spans.
let mut items = vec![];
let mut ranges = vec![];
// Layout the children and collect them into items.
for (range, child) in par.ranges().zip(&par.children) {
match *child {
ParChild::Spacing(amount) => {
items.push(ParItem::Spacing(amount));
ranges.push(range);
}
ParChild::Text(_, align, ref state) => {
// TODO: Also split by language and script.
for (subrange, dir) in split_runs(&bidi, range) {
let text = &bidi.text[subrange.clone()];
let shaped = shape(ctx, text, dir, state);
items.push(ParItem::Text(shaped, align));
ranges.push(subrange);
}
}
ParChild::Any(ref node, align) => {
let frame = node.layout(ctx, regions).remove(0);
items.push(ParItem::Frame(frame.item, align));
ranges.push(range);
}
}
}
Self {
dir: par.dir,
line_spacing: par.line_spacing,
bidi,
items,
ranges,
}
}
/// Find first-fit line breaks and build the paragraph.
fn layout(
self,
ctx: &mut LayoutContext,
regions: Regions,
) -> Vec<Constrained<Rc<Frame>>> {
let mut stack = LineStack::new(self.line_spacing, regions);
// The current line attempt.
// Invariant: Always fits into `stack.regions.current`.
let mut last = None;
// The start of the line in `last`.
let mut start = 0;
// Find suitable line breaks.
// TODO: Provide line break opportunities on alignment changes.
for (end, mandatory) in LineBreakIterator::new(self.bidi.text) {
// Compute the line and its size.
let mut line = LineLayout::new(ctx, &self, start .. end);
// If the line doesn't fit anymore, we push the last fitting attempt
// into the stack and rebuild the line from its end. The resulting
// line cannot be broken up further.
if !stack.regions.current.fits(line.size) {
if let Some((last_line, last_end)) = last.take() {
// The region must not fit this line for the result to be valid.
if !stack.regions.current.width.fits(line.size.width) {
stack.constraints.max.horizontal.set_min(line.size.width);
}
if !stack.regions.current.height.fits(line.size.height) {
stack
.constraints
.max
.vertical
.set_min(stack.size.height + line.size.height);
}
stack.push(last_line);
stack.constraints.min.vertical = Some(stack.size.height);
start = last_end;
line = LineLayout::new(ctx, &self, start .. end);
}
}
// If the line does not fit vertically, we start a new region.
while !stack.regions.current.height.fits(line.size.height)
&& !stack.regions.in_full_last()
{
// Again, the line must not fit. It would if the space taken up
// plus the line height would fit, therefore the constraint
// below.
stack.constraints.max.vertical.set_min(
stack.full.height - stack.regions.current.height + line.size.height,
);
stack.finish_region(ctx);
}
// If the line does not fit vertically, we start a new region.
while !stack.regions.current.height.fits(line.size.height) {
if stack.regions.in_full_last() {
stack.overflowing = true;
break;
}
stack.constraints.max.vertical.set_min(
stack.full.height - stack.regions.current.height + line.size.height,
);
stack.finish_region(ctx);
}
// If the line does not fit horizontally or we have a mandatory
// line break (i.e. due to "\n"), we push the line into the
// stack.
if mandatory || !stack.regions.current.width.fits(line.size.width) {
stack.push(line);
start = end;
last = None;
stack.constraints.min.vertical = Some(stack.size.height);
// If there is a trailing line break at the end of the
// paragraph, we want to force an empty line.
if mandatory && end == self.bidi.text.len() {
stack.push(LineLayout::new(ctx, &self, end .. end));
stack.constraints.min.vertical = Some(stack.size.height);
}
} else {
// Otherwise, the line fits both horizontally and vertically
// and we remember it.
stack.constraints.min.horizontal.set_max(line.size.width);
last = Some((line, end));
}
}
if let Some((line, _)) = last {
stack.push(line);
stack.constraints.min.vertical = Some(stack.size.height);
}
stack.finish(ctx)
}
/// Find the index of the item whose range contains the `text_offset`.
fn find(&self, text_offset: usize) -> Option<usize> {
self.ranges.binary_search_by(|r| r.locate(text_offset)).ok()
}
}
/// Split a range of text into runs of consistent direction.
fn split_runs<'a>(
bidi: &'a BidiInfo,
range: Range,
) -> impl Iterator<Item = (Range, Dir)> + 'a {
let mut cursor = range.start;
bidi.levels[range.clone()]
.group_by_key(|&level| level)
.map(move |(level, group)| {
let start = cursor;
cursor += group.len();
(start .. cursor, level.dir())
})
}
/// A prepared item in a paragraph layout.
enum ParItem<'a> {
/// Spacing between other items.
Spacing(Length),
/// A shaped text run with consistent direction.
Text(ShapedText<'a>, Align),
/// A layouted child node.
Frame(Rc<Frame>, Align),
}
impl ParItem<'_> {
/// The size of the item.
pub fn size(&self) -> Size {
match self {
Self::Spacing(amount) => Size::new(*amount, Length::zero()),
Self::Text(shaped, _) => shaped.size,
Self::Frame(frame, _) => frame.size,
}
}
/// The baseline of the item.
pub fn baseline(&self) -> Length {
match self {
Self::Spacing(_) => Length::zero(),
Self::Text(shaped, _) => shaped.baseline,
Self::Frame(frame, _) => frame.baseline,
}
}
}
/// Stacks lines on top of each other.
struct LineStack<'a> {
line_spacing: Length,
full: Size,
regions: Regions,
size: Size,
lines: Vec<LineLayout<'a>>,
finished: Vec<Constrained<Rc<Frame>>>,
constraints: Constraints,
overflowing: bool,
}
impl<'a> LineStack<'a> {
/// Create an empty line stack.
fn new(line_spacing: Length, regions: Regions) -> Self {
Self {
line_spacing,
constraints: Constraints::new(regions.expand),
full: regions.current,
regions,
size: Size::zero(),
lines: vec![],
finished: vec![],
overflowing: false,
}
}
/// Push a new line into the stack.
fn push(&mut self, line: LineLayout<'a>) {
self.regions.current.height -= line.size.height + self.line_spacing;
self.size.width.set_max(line.size.width);
self.size.height += line.size.height;
if !self.lines.is_empty() {
self.size.height += self.line_spacing;
}
self.lines.push(line);
}
/// Finish the frame for one region.
fn finish_region(&mut self, ctx: &LayoutContext) {
if self.regions.expand.horizontal {
self.size.width = self.regions.current.width;
self.constraints.exact.horizontal = Some(self.regions.current.width);
}
if self.overflowing {
self.constraints.min.vertical = None;
self.constraints.max.vertical = None;
self.constraints.exact = self.full.to_spec().map(Some);
}
let mut output = Frame::new(self.size, self.size.height);
let mut offset = Length::zero();
let mut first = true;
for line in self.lines.drain(..) {
let frame = line.build(ctx, self.size.width);
let pos = Point::new(Length::zero(), offset);
if first {
output.baseline = pos.y + frame.baseline;
first = false;
}
offset += frame.size.height + self.line_spacing;
output.merge_frame(pos, frame);
}
self.finished.push(output.constrain(self.constraints));
self.regions.next();
self.full = self.regions.current;
self.constraints = Constraints::new(self.regions.expand);
self.size = Size::zero();
}
/// Finish the last region and return the built frames.
fn finish(mut self, ctx: &LayoutContext) -> Vec<Constrained<Rc<Frame>>> {
self.finish_region(ctx);
self.finished
}
}
/// A lightweight representation of a line that spans a specific range in a
/// paragraph's text. This type enables you to cheaply measure the size of a
/// line in a range before comitting to building the line's frame.
struct LineLayout<'a> {
/// The direction of the line.
dir: Dir,
/// Bidi information about the paragraph.
bidi: &'a BidiInfo<'a>,
/// The range the line spans in the paragraph.
line: Range,
/// A reshaped text item if the line sliced up a text item at the start.
first: Option<ParItem<'a>>,
/// Middle items which don't need to be reprocessed.
items: &'a [ParItem<'a>],
/// A reshaped text item if the line sliced up a text item at the end. If
/// there is only one text item, this takes precedence over `first`.
last: Option<ParItem<'a>>,
/// The ranges, indexed as `[first, ..items, last]`. The ranges for `first`
/// and `last` aren't trimmed to the line, but it doesn't matter because
/// we're just checking which range an index falls into.
ranges: &'a [Range],
/// The size of the line.
size: Size,
/// The baseline of the line.
baseline: Length,
}
impl<'a> LineLayout<'a> {
/// Create a line which spans the given range.
fn new(ctx: &mut LayoutContext, par: &'a ParLayouter<'a>, mut line: Range) -> Self {
// Find the items which bound the text range.
let last_idx = par.find(line.end.saturating_sub(1)).unwrap();
let first_idx = if line.is_empty() {
last_idx
} else {
par.find(line.start).unwrap()
};
// Slice out the relevant items and ranges.
let mut items = &par.items[first_idx ..= last_idx];
let ranges = &par.ranges[first_idx ..= last_idx];
// Reshape the last item if it's split in half.
let mut last = None;
if let Some((ParItem::Text(shaped, align), rest)) = items.split_last() {
// Compute the range we want to shape, trimming whitespace at the
// end of the line.
let base = par.ranges[last_idx].start;
let start = line.start.max(base);
let end = start + par.bidi.text[start .. line.end].trim_end().len();
let range = start - base .. end - base;
// Reshape if necessary.
if range.len() < shaped.text.len() {
// If start == end and the rest is empty, then we have an empty
// line. To make that line have the appropriate height, we shape the
// empty string.
if !range.is_empty() || rest.is_empty() {
// Reshape that part.
let reshaped = shaped.reshape(ctx, range);
last = Some(ParItem::Text(reshaped, *align));
}
items = rest;
line.end = end;
}
}
// Reshape the start item if it's split in half.
let mut first = None;
if let Some((ParItem::Text(shaped, align), rest)) = items.split_first() {
// Compute the range we want to shape.
let Range { start: base, end: first_end } = par.ranges[first_idx];
let start = line.start;
let end = line.end.min(first_end);
let range = start - base .. end - base;
// Reshape if necessary.
if range.len() < shaped.text.len() {
if !range.is_empty() {
let reshaped = shaped.reshape(ctx, range);
first = Some(ParItem::Text(reshaped, *align));
}
items = rest;
}
}
let mut width = Length::zero();
let mut top = Length::zero();
let mut bottom = Length::zero();
// Measure the size of the line.
for item in first.iter().chain(items).chain(&last) {
let size = item.size();
let baseline = item.baseline();
width += size.width;
top.set_max(baseline);
bottom.set_max(size.height - baseline);
}
Self {
dir: par.dir,
bidi: &par.bidi,
line,
first,
items,
last,
ranges,
size: Size::new(width, top + bottom),
baseline: top,
}
}
/// Build the line's frame.
fn build(&self, ctx: &LayoutContext, width: Length) -> Frame {
let size = Size::new(self.size.width.max(width), self.size.height);
let free = size.width - self.size.width;
let mut output = Frame::new(size, self.baseline);
let mut offset = Length::zero();
let mut ruler = Align::Start;
self.reordered(|item| {
let frame = match *item {
ParItem::Spacing(amount) => {
offset += amount;
return;
}
ParItem::Text(ref shaped, align) => {
ruler = ruler.max(align);
Rc::new(shaped.build(ctx))
}
ParItem::Frame(ref frame, align) => {
ruler = ruler.max(align);
frame.clone()
}
};
// FIXME: Ruler alignment for RTL.
let pos = Point::new(
ruler.resolve(self.dir, offset .. free + offset),
self.baseline - frame.baseline,
);
offset += frame.size.width;
output.push_frame(pos, frame);
});
output
}
/// Iterate through the line's items in visual order.
fn reordered(&self, mut f: impl FnMut(&ParItem<'a>)) {
// The bidi crate doesn't like empty lines.
if self.line.is_empty() {
return;
}
// Find the paragraph that contains the line.
let para = self
.bidi
.paragraphs
.iter()
.find(|para| para.range.contains(&self.line.start))
.unwrap();
// Compute the reordered ranges in visual order (left to right).
let (levels, runs) = self.bidi.visual_runs(para, self.line.clone());
// Find the items for each run.
for run in runs {
let first_idx = self.find(run.start).unwrap();
let last_idx = self.find(run.end - 1).unwrap();
let range = first_idx ..= last_idx;
// Provide the items forwards or backwards depending on the run's
// direction.
if levels[run.start].is_ltr() {
for item in range {
f(self.get(item).unwrap());
}
} else {
for item in range.rev() {
f(self.get(item).unwrap());
}
}
}
}
/// Find the index of the item whose range contains the `text_offset`.
fn find(&self, text_offset: usize) -> Option<usize> {
self.ranges.binary_search_by(|r| r.locate(text_offset)).ok()
}
/// Get the item at the index.
fn get(&self, index: usize) -> Option<&ParItem<'a>> {
self.first.iter().chain(self.items).chain(&self.last).nth(index)
}
}
/// Additional methods for BiDi levels.
trait LevelExt: Sized {
fn from_dir(dir: Dir) -> Option<Self>;
fn dir(self) -> Dir;
}
impl LevelExt for Level {
fn from_dir(dir: Dir) -> Option<Self> {
match dir {
Dir::LTR => Some(Level::ltr()),
Dir::RTL => Some(Level::rtl()),
_ => None,
}
}
fn dir(self) -> Dir {
if self.is_ltr() { Dir::LTR } else { Dir::RTL }
}
}