typst/src/export/pdf.rs
2021-07-21 11:28:29 +02:00

608 lines
20 KiB
Rust

//! Exporting into PDF documents.
use std::cmp::Eq;
use std::collections::HashMap;
use std::hash::Hash;
use std::rc::Rc;
use image::{DynamicImage, GenericImageView, ImageFormat, ImageResult, Rgba};
use miniz_oxide::deflate;
use pdf_writer::{
CidFontType, ColorSpace, Content, Filter, FontFlags, Name, PdfWriter, Rect, Ref, Str,
SystemInfo, UnicodeCmap,
};
use ttf_parser::{name_id, GlyphId};
use crate::color::Color;
use crate::font::{Em, FaceId, FontCache};
use crate::geom::{self, Length, Size};
use crate::image::{Image, ImageCache, ImageId};
use crate::layout::{Element, Frame, Geometry, Paint};
use crate::Context;
/// Export a collection of frames into a PDF document.
///
/// This creates one page per frame. In addition to the frames, you need to pass
/// in the cache used during compilation such that things like fonts and images
/// can be included in the PDF.
///
/// Returns the raw bytes making up the PDF document.
pub fn pdf(ctx: &Context, frames: &[Rc<Frame>]) -> Vec<u8> {
PdfExporter::new(ctx, frames).write()
}
struct PdfExporter<'a> {
writer: PdfWriter,
frames: &'a [Rc<Frame>],
fonts: &'a FontCache,
font_map: Remapper<FaceId>,
images: &'a ImageCache,
image_map: Remapper<ImageId>,
refs: Refs,
}
impl<'a> PdfExporter<'a> {
fn new(ctx: &'a Context, frames: &'a [Rc<Frame>]) -> Self {
let mut writer = PdfWriter::new(1, 7);
writer.set_indent(2);
let mut font_map = Remapper::new();
let mut image_map = Remapper::new();
let mut alpha_masks = 0;
for frame in frames {
for (_, element) in frame.elements() {
match *element {
Element::Text(ref shaped) => font_map.insert(shaped.face_id),
Element::Geometry(_, _) => {}
Element::Image(id, _) => {
let img = ctx.images.get(id);
if img.buf.color().has_alpha() {
alpha_masks += 1;
}
image_map.insert(id);
}
}
}
}
let refs = Refs::new(frames.len(), font_map.len(), image_map.len(), alpha_masks);
Self {
writer,
frames,
fonts: &ctx.fonts,
images: &ctx.images,
refs,
font_map,
image_map,
}
}
fn write(mut self) -> Vec<u8> {
self.write_structure();
self.write_pages();
self.write_fonts();
self.write_images();
self.writer.finish(self.refs.catalog)
}
fn write_structure(&mut self) {
// The document catalog.
self.writer.catalog(self.refs.catalog).pages(self.refs.page_tree);
// The root page tree.
let mut pages = self.writer.pages(self.refs.page_tree);
pages.kids(self.refs.pages());
let mut resources = pages.resources();
let mut fonts = resources.fonts();
for (refs, f) in self.refs.fonts().zip(self.font_map.pdf_indices()) {
let name = format!("F{}", f);
fonts.pair(Name(name.as_bytes()), refs.type0_font);
}
drop(fonts);
let mut images = resources.x_objects();
for (id, im) in self.refs.images().zip(self.image_map.pdf_indices()) {
let name = format!("Im{}", im);
images.pair(Name(name.as_bytes()), id);
}
drop(images);
drop(resources);
drop(pages);
// The page objects (non-root nodes in the page tree).
for ((page_id, content_id), page) in
self.refs.pages().zip(self.refs.contents()).zip(self.frames)
{
self.writer
.page(page_id)
.parent(self.refs.page_tree)
.media_box(Rect::new(
0.0,
0.0,
page.size.width.to_pt() as f32,
page.size.height.to_pt() as f32,
))
.contents(content_id);
}
}
fn write_pages(&mut self) {
for (id, page) in self.refs.contents().zip(self.frames) {
self.write_page(id, &page);
}
}
fn write_page(&mut self, id: Ref, page: &'a Frame) {
let mut content = Content::new();
// We only write font switching actions when the used face changes. To
// do that, we need to remember the active face.
let mut face = None;
let mut size = Length::zero();
let mut fill: Option<Paint> = None;
for (pos, element) in page.elements() {
let x = pos.x.to_pt() as f32;
let y = (page.size.height - pos.y).to_pt() as f32;
match *element {
Element::Text(ref shaped) => {
if fill != Some(shaped.fill) {
write_fill(&mut content, shaped.fill);
fill = Some(shaped.fill);
}
let mut text = content.text();
// Then, also check if we need to issue a font switching
// action.
if face != Some(shaped.face_id) || shaped.size != size {
face = Some(shaped.face_id);
size = shaped.size;
let name = format!("F{}", self.font_map.map(shaped.face_id));
text.font(Name(name.as_bytes()), size.to_pt() as f32);
}
// TODO: Respect individual glyph offsets.
text.matrix(1.0, 0.0, 0.0, 1.0, x, y);
text.show(Str(&shaped.encode_glyphs_be()));
}
Element::Geometry(ref geometry, paint) => {
content.save_state();
match *geometry {
Geometry::Rect(Size { width, height }) => {
let w = width.to_pt() as f32;
let h = height.to_pt() as f32;
if w > 0.0 && h > 0.0 {
write_fill(&mut content, paint);
content.rect(x, y - h, w, h, false, true);
}
}
Geometry::Ellipse(size) => {
let path = geom::Path::ellipse(size);
write_fill(&mut content, paint);
write_path(&mut content, x, y, &path, false, true);
}
Geometry::Line(target, thickness) => {
write_stroke(&mut content, paint, thickness.to_pt() as f32);
content.path(true, false).move_to(x, y).line_to(
x + target.x.to_pt() as f32,
y - target.y.to_pt() as f32,
);
}
Geometry::Path(ref path) => {
write_fill(&mut content, paint);
write_path(&mut content, x, y, path, false, true)
}
}
content.restore_state();
}
Element::Image(id, Size { width, height }) => {
let name = format!("Im{}", self.image_map.map(id));
let w = width.to_pt() as f32;
let h = height.to_pt() as f32;
content.save_state();
content.matrix(w, 0.0, 0.0, h, x, y - h);
content.x_object(Name(name.as_bytes()));
content.restore_state();
}
}
}
self.writer.stream(id, &content.finish());
}
fn write_fonts(&mut self) {
for (refs, face_id) in self.refs.fonts().zip(self.font_map.layout_indices()) {
let face = self.fonts.get(face_id);
let ttf = face.ttf();
let name = ttf
.names()
.find(|entry| {
entry.name_id() == name_id::POST_SCRIPT_NAME && entry.is_unicode()
})
.and_then(|entry| entry.to_string())
.unwrap_or_else(|| "unknown".to_string());
let base_font = format!("ABCDEF+{}", name);
let base_font = Name(base_font.as_bytes());
let cmap_name = Name(b"Custom");
let system_info = SystemInfo {
registry: Str(b"Adobe"),
ordering: Str(b"Identity"),
supplement: 0,
};
let mut flags = FontFlags::empty();
flags.set(FontFlags::SERIF, name.contains("Serif"));
flags.set(FontFlags::FIXED_PITCH, ttf.is_monospaced());
flags.set(FontFlags::ITALIC, ttf.is_italic());
flags.insert(FontFlags::SYMBOLIC);
flags.insert(FontFlags::SMALL_CAP);
let global_bbox = ttf.global_bounding_box();
let bbox = Rect::new(
face.to_em(global_bbox.x_min).to_pdf(),
face.to_em(global_bbox.y_min).to_pdf(),
face.to_em(global_bbox.x_max).to_pdf(),
face.to_em(global_bbox.y_max).to_pdf(),
);
let italic_angle = ttf.italic_angle().unwrap_or(0.0);
let ascender = face.ascender.to_pdf();
let descender = face.descender.to_pdf();
let cap_height = face.cap_height.to_pdf();
let stem_v = 10.0 + 0.244 * (f32::from(ttf.weight().to_number()) - 50.0);
// Write the base font object referencing the CID font.
self.writer
.type0_font(refs.type0_font)
.base_font(base_font)
.encoding_predefined(Name(b"Identity-H"))
.descendant_font(refs.cid_font)
.to_unicode(refs.cmap);
// Write the CID font referencing the font descriptor.
self.writer
.cid_font(refs.cid_font, CidFontType::Type2)
.base_font(base_font)
.system_info(system_info)
.font_descriptor(refs.font_descriptor)
.widths()
.individual(0, {
let num_glyphs = ttf.number_of_glyphs();
(0 .. num_glyphs).map(|g| {
let x = ttf.glyph_hor_advance(GlyphId(g)).unwrap_or(0);
face.to_em(x).to_pdf()
})
});
// Write the font descriptor (contains metrics about the font).
self.writer
.font_descriptor(refs.font_descriptor)
.font_name(base_font)
.font_flags(flags)
.font_bbox(bbox)
.italic_angle(italic_angle)
.ascent(ascender)
.descent(descender)
.cap_height(cap_height)
.stem_v(stem_v)
.font_file2(refs.data);
// Write the to-unicode character map, which maps glyph ids back to
// unicode codepoints to enable copying out of the PDF.
self.writer
.cmap(refs.cmap, &{
let mut cmap = UnicodeCmap::new(cmap_name, system_info);
for subtable in ttf.character_mapping_subtables() {
subtable.codepoints(|n| {
if let Some(c) = std::char::from_u32(n) {
if let Some(g) = ttf.glyph_index(c) {
cmap.pair(g.0, c);
}
}
})
}
cmap.finish()
})
.name(cmap_name)
.system_info(system_info);
// Write the face's bytes.
self.writer.stream(refs.data, face.buffer());
}
}
fn write_images(&mut self) {
let mut masks_seen = 0;
for (id, image_id) in self.refs.images().zip(self.image_map.layout_indices()) {
let img = self.images.get(image_id);
let (width, height) = img.buf.dimensions();
// Add the primary image.
if let Ok((data, filter, color_space)) = encode_image(img) {
let mut image = self.writer.image(id, &data);
image.filter(filter);
image.width(width as i32);
image.height(height as i32);
image.color_space(color_space);
image.bits_per_component(8);
// Add a second gray-scale image containing the alpha values if
// this image has an alpha channel.
if img.buf.color().has_alpha() {
let (alpha_data, alpha_filter) = encode_alpha(img);
let mask_id = self.refs.alpha_mask(masks_seen);
image.s_mask(mask_id);
drop(image);
let mut mask = self.writer.image(mask_id, &alpha_data);
mask.filter(alpha_filter);
mask.width(width as i32);
mask.height(height as i32);
mask.color_space(ColorSpace::DeviceGray);
mask.bits_per_component(8);
masks_seen += 1;
}
} else {
// TODO: Warn that image could not be encoded.
self.writer
.image(id, &[])
.width(0)
.height(0)
.color_space(ColorSpace::DeviceGray)
.bits_per_component(1);
}
}
}
}
/// Write a fill change into a content stream.
fn write_fill(content: &mut Content, fill: Paint) {
let Paint::Color(Color::Rgba(c)) = fill;
content.fill_rgb(c.r as f32 / 255.0, c.g as f32 / 255.0, c.b as f32 / 255.0);
}
/// Write a stroke change into a content stream.
fn write_stroke(content: &mut Content, stroke: Paint, thickness: f32) {
match stroke {
Paint::Color(Color::Rgba(c)) => {
content.stroke_rgb(
c.r as f32 / 255.0,
c.g as f32 / 255.0,
c.b as f32 / 255.0,
);
}
}
content.line_width(thickness);
}
/// Write a path into a content stream.
fn write_path(
content: &mut Content,
x: f32,
y: f32,
path: &geom::Path,
stroke: bool,
fill: bool,
) {
let f = |length: Length| length.to_pt() as f32;
let mut builder = content.path(stroke, fill);
for elem in &path.0 {
match elem {
geom::PathElement::MoveTo(p) => builder.move_to(x + f(p.x), y + f(p.y)),
geom::PathElement::LineTo(p) => builder.line_to(x + f(p.x), y + f(p.y)),
geom::PathElement::CubicTo(p1, p2, p3) => builder.cubic_to(
x + f(p1.x),
y + f(p1.y),
x + f(p2.x),
y + f(p2.y),
x + f(p3.x),
y + f(p3.y),
),
geom::PathElement::ClosePath => builder.close_path(),
};
}
}
/// The compression level for the deflating.
const DEFLATE_LEVEL: u8 = 6;
/// Encode an image with a suitable filter.
///
/// Skips the alpha channel as that's encoded separately.
fn encode_image(img: &Image) -> ImageResult<(Vec<u8>, Filter, ColorSpace)> {
let mut data = vec![];
let (filter, space) = match (img.format, &img.buf) {
// 8-bit gray JPEG.
(ImageFormat::Jpeg, DynamicImage::ImageLuma8(_)) => {
img.buf.write_to(&mut data, img.format)?;
(Filter::DctDecode, ColorSpace::DeviceGray)
}
// 8-bit Rgb JPEG (Cmyk JPEGs get converted to Rgb earlier).
(ImageFormat::Jpeg, DynamicImage::ImageRgb8(_)) => {
img.buf.write_to(&mut data, img.format)?;
(Filter::DctDecode, ColorSpace::DeviceRgb)
}
// TODO: Encode flate streams with PNG-predictor?
// 8-bit gray PNG.
(ImageFormat::Png, DynamicImage::ImageLuma8(luma)) => {
data = deflate::compress_to_vec_zlib(&luma.as_raw(), DEFLATE_LEVEL);
(Filter::FlateDecode, ColorSpace::DeviceGray)
}
// Anything else (including Rgb(a) PNGs).
(_, buf) => {
let (width, height) = buf.dimensions();
let mut pixels = Vec::with_capacity(3 * width as usize * height as usize);
for (_, _, Rgba([r, g, b, _])) in buf.pixels() {
pixels.push(r);
pixels.push(g);
pixels.push(b);
}
data = deflate::compress_to_vec_zlib(&pixels, DEFLATE_LEVEL);
(Filter::FlateDecode, ColorSpace::DeviceRgb)
}
};
Ok((data, filter, space))
}
/// Encode an image's alpha channel if present.
fn encode_alpha(img: &Image) -> (Vec<u8>, Filter) {
let pixels: Vec<_> = img.buf.pixels().map(|(_, _, Rgba([_, _, _, a]))| a).collect();
let data = deflate::compress_to_vec_zlib(&pixels, DEFLATE_LEVEL);
(data, Filter::FlateDecode)
}
/// We need to know exactly which indirect reference id will be used for which
/// objects up-front to correctly declare the document catalogue, page tree and
/// so on. These offsets are computed in the beginning and stored here.
struct Refs {
catalog: Ref,
page_tree: Ref,
pages_start: i32,
contents_start: i32,
fonts_start: i32,
images_start: i32,
alpha_masks_start: i32,
end: i32,
}
struct FontRefs {
type0_font: Ref,
cid_font: Ref,
font_descriptor: Ref,
cmap: Ref,
data: Ref,
}
impl Refs {
const OBJECTS_PER_FONT: usize = 5;
fn new(pages: usize, fonts: usize, images: usize, alpha_masks: usize) -> Self {
let catalog = 1;
let page_tree = catalog + 1;
let pages_start = page_tree + 1;
let contents_start = pages_start + pages as i32;
let fonts_start = contents_start + pages as i32;
let images_start = fonts_start + (Self::OBJECTS_PER_FONT * fonts) as i32;
let alpha_masks_start = images_start + images as i32;
let end = alpha_masks_start + alpha_masks as i32;
Self {
catalog: Ref::new(catalog),
page_tree: Ref::new(page_tree),
pages_start,
contents_start,
fonts_start,
images_start,
alpha_masks_start,
end,
}
}
fn pages(&self) -> impl Iterator<Item = Ref> {
(self.pages_start .. self.contents_start).map(Ref::new)
}
fn contents(&self) -> impl Iterator<Item = Ref> {
(self.contents_start .. self.images_start).map(Ref::new)
}
fn fonts(&self) -> impl Iterator<Item = FontRefs> {
(self.fonts_start .. self.images_start)
.step_by(Self::OBJECTS_PER_FONT)
.map(|id| FontRefs {
type0_font: Ref::new(id),
cid_font: Ref::new(id + 1),
font_descriptor: Ref::new(id + 2),
cmap: Ref::new(id + 3),
data: Ref::new(id + 4),
})
}
fn images(&self) -> impl Iterator<Item = Ref> {
(self.images_start .. self.end).map(Ref::new)
}
fn alpha_mask(&self, i: usize) -> Ref {
Ref::new(self.alpha_masks_start + i as i32)
}
}
/// Used to assign new, consecutive PDF-internal indices to things.
struct Remapper<Index> {
/// Forwards from the old indices to the new pdf indices.
to_pdf: HashMap<Index, usize>,
/// Backwards from the pdf indices to the old indices.
to_layout: Vec<Index>,
}
impl<Index> Remapper<Index>
where
Index: Copy + Eq + Hash,
{
fn new() -> Self {
Self {
to_pdf: HashMap::new(),
to_layout: vec![],
}
}
fn len(&self) -> usize {
self.to_layout.len()
}
fn insert(&mut self, index: Index) {
let to_layout = &mut self.to_layout;
self.to_pdf.entry(index).or_insert_with(|| {
let pdf_index = to_layout.len();
to_layout.push(index);
pdf_index
});
}
fn map(&self, index: Index) -> usize {
self.to_pdf[&index]
}
fn pdf_indices(&self) -> impl Iterator<Item = usize> {
0 .. self.to_pdf.len()
}
fn layout_indices(&self) -> impl Iterator<Item = Index> + '_ {
self.to_layout.iter().copied()
}
}
/// Additional methods for [`Em`].
trait EmExt {
/// Convert an em length to a number of PDF font units.
fn to_pdf(self) -> f32;
}
impl EmExt for Em {
fn to_pdf(self) -> f32 {
1000.0 * self.get() as f32
}
}