HydroH 1d74c8e8bf
Add non-zero and even-odd fill rules to path and polygon (#4580)
Co-authored-by: Laurenz <laurmaedje@gmail.com>
2024-07-22 14:24:29 +00:00

594 lines
22 KiB
Rust

use std::f32::consts::TAU;
use ecow::{eco_format, EcoString};
use ttf_parser::OutlineBuilder;
use typst::foundations::Repr;
use typst::layout::{Angle, Axes, Frame, Quadrant, Ratio, Size, Transform};
use typst::utils::hash128;
use typst::visualize::{Color, FillRule, Gradient, Paint, Pattern, RatioOrAngle};
use xmlwriter::XmlWriter;
use crate::{Id, SVGRenderer, State, SvgMatrix, SvgPathBuilder};
/// The number of segments in a conic gradient.
/// This is a heuristic value that seems to work well.
/// Smaller values could be interesting for optimization.
const CONIC_SEGMENT: usize = 360;
impl SVGRenderer {
/// Render a frame to a string.
pub(super) fn render_pattern_frame(
&mut self,
state: State,
ts: Transform,
frame: &Frame,
) -> String {
let mut xml = XmlWriter::new(xmlwriter::Options::default());
std::mem::swap(&mut self.xml, &mut xml);
self.render_frame(state, ts, frame);
std::mem::swap(&mut self.xml, &mut xml);
xml.end_document()
}
/// Write a fill attribute.
pub(super) fn write_fill(
&mut self,
fill: &Paint,
fill_rule: FillRule,
size: Size,
ts: Transform,
) {
match fill {
Paint::Solid(color) => self.xml.write_attribute("fill", &color.encode()),
Paint::Gradient(gradient) => {
let id = self.push_gradient(gradient, size, ts);
self.xml.write_attribute_fmt("fill", format_args!("url(#{id})"));
}
Paint::Pattern(pattern) => {
let id = self.push_pattern(pattern, size, ts);
self.xml.write_attribute_fmt("fill", format_args!("url(#{id})"));
}
}
match fill_rule {
FillRule::NonZero => self.xml.write_attribute("fill-rule", "nonzero"),
FillRule::EvenOdd => self.xml.write_attribute("fill-rule", "evenodd"),
}
}
/// Pushes a gradient to the list of gradients to write SVG file.
///
/// If the gradient is already present, returns the id of the existing
/// gradient. Otherwise, inserts the gradient and returns the id of the
/// inserted gradient. If the transform of the gradient is the identify
/// matrix, the returned ID will be the ID of the "source" gradient,
/// this is a file size optimization.
pub(super) fn push_gradient(
&mut self,
gradient: &Gradient,
size: Size,
ts: Transform,
) -> Id {
let gradient_id = self
.gradients
.insert_with(hash128(&(gradient, size.aspect_ratio())), || {
(gradient.clone(), size.aspect_ratio())
});
if ts.is_identity() {
return gradient_id;
}
self.gradient_refs
.insert_with(hash128(&(gradient_id, ts)), || GradientRef {
id: gradient_id,
kind: gradient.into(),
transform: ts,
})
}
pub(super) fn push_pattern(
&mut self,
pattern: &Pattern,
size: Size,
ts: Transform,
) -> Id {
let pattern_size = pattern.size() + pattern.spacing();
// Unfortunately due to a limitation of `xmlwriter`, we need to
// render the frame twice: once to allocate all of the resources
// that it needs and once to actually render it.
self.render_pattern_frame(
State::new(pattern_size, Transform::identity()),
Transform::identity(),
pattern.frame(),
);
let pattern_id = self.patterns.insert_with(hash128(pattern), || pattern.clone());
self.pattern_refs
.insert_with(hash128(&(pattern_id, ts)), || PatternRef {
id: pattern_id,
transform: ts,
ratio: Axes::new(
Ratio::new(pattern_size.x.to_pt() / size.x.to_pt()),
Ratio::new(pattern_size.y.to_pt() / size.y.to_pt()),
),
})
}
/// Write the raw gradients (without transform) to the SVG file.
pub(super) fn write_gradients(&mut self) {
if self.gradients.is_empty() {
return;
}
self.xml.start_element("defs");
self.xml.write_attribute("id", "gradients");
for (id, (gradient, ratio)) in self.gradients.iter() {
match &gradient {
Gradient::Linear(linear) => {
self.xml.start_element("linearGradient");
self.xml.write_attribute("id", &id);
self.xml.write_attribute("spreadMethod", "pad");
self.xml.write_attribute("gradientUnits", "userSpaceOnUse");
let angle = Gradient::correct_aspect_ratio(linear.angle, *ratio);
let (sin, cos) = (angle.sin(), angle.cos());
let length = sin.abs() + cos.abs();
let (x1, y1, x2, y2) = match angle.quadrant() {
Quadrant::First => (0.0, 0.0, cos * length, sin * length),
Quadrant::Second => (1.0, 0.0, cos * length + 1.0, sin * length),
Quadrant::Third => {
(1.0, 1.0, cos * length + 1.0, sin * length + 1.0)
}
Quadrant::Fourth => (0.0, 1.0, cos * length, sin * length + 1.0),
};
self.xml.write_attribute("x1", &x1);
self.xml.write_attribute("y1", &y1);
self.xml.write_attribute("x2", &x2);
self.xml.write_attribute("y2", &y2);
}
Gradient::Radial(radial) => {
self.xml.start_element("radialGradient");
self.xml.write_attribute("id", &id);
self.xml.write_attribute("spreadMethod", "pad");
self.xml.write_attribute("gradientUnits", "userSpaceOnUse");
self.xml.write_attribute("cx", &radial.center.x.get());
self.xml.write_attribute("cy", &radial.center.y.get());
self.xml.write_attribute("r", &radial.radius.get());
self.xml.write_attribute("fx", &radial.focal_center.x.get());
self.xml.write_attribute("fy", &radial.focal_center.y.get());
self.xml.write_attribute("fr", &radial.focal_radius.get());
}
Gradient::Conic(conic) => {
self.xml.start_element("pattern");
self.xml.write_attribute("id", &id);
self.xml.write_attribute("viewBox", "0 0 1 1");
self.xml.write_attribute("preserveAspectRatio", "none");
self.xml.write_attribute("patternUnits", "userSpaceOnUse");
self.xml.write_attribute("width", "2");
self.xml.write_attribute("height", "2");
self.xml.write_attribute("x", "-0.5");
self.xml.write_attribute("y", "-0.5");
// The rotation angle, negated to match rotation in PNG.
let angle: f32 =
-(Gradient::correct_aspect_ratio(conic.angle, *ratio).to_rad()
as f32)
.rem_euclid(TAU);
let center: (f32, f32) =
(conic.center.x.get() as f32, conic.center.y.get() as f32);
// We build an arg segment for each segment of a circle.
let dtheta = TAU / CONIC_SEGMENT as f32;
for i in 0..CONIC_SEGMENT {
let theta1 = dtheta * i as f32;
let theta2 = dtheta * (i + 1) as f32;
// Create the path for the segment.
let mut builder = SvgPathBuilder::default();
builder.move_to(
correct_pattern_pos(center.0),
correct_pattern_pos(center.1),
);
builder.line_to(
correct_pattern_pos(-2.0 * (theta1 + angle).cos() + center.0),
correct_pattern_pos(2.0 * (theta1 + angle).sin() + center.1),
);
builder.arc(
(2.0, 2.0),
0.0,
0,
1,
(
correct_pattern_pos(
-2.0 * (theta2 + angle).cos() + center.0,
),
correct_pattern_pos(
2.0 * (theta2 + angle).sin() + center.1,
),
),
);
builder.close();
let t1 = (i as f32) / CONIC_SEGMENT as f32;
let t2 = (i + 1) as f32 / CONIC_SEGMENT as f32;
let subgradient = SVGSubGradient {
center: conic.center,
t0: Angle::rad((theta1 + angle) as f64),
t1: Angle::rad((theta2 + angle) as f64),
c0: gradient
.sample(RatioOrAngle::Ratio(Ratio::new(t1 as f64))),
c1: gradient
.sample(RatioOrAngle::Ratio(Ratio::new(t2 as f64))),
};
let id = self
.conic_subgradients
.insert_with(hash128(&subgradient), || subgradient);
// Add the path to the pattern.
self.xml.start_element("path");
self.xml.write_attribute("d", &builder.0);
self.xml.write_attribute_fmt("fill", format_args!("url(#{id})"));
self.xml
.write_attribute_fmt("stroke", format_args!("url(#{id})"));
self.xml.write_attribute("stroke-width", "0");
self.xml.write_attribute("shape-rendering", "optimizeSpeed");
self.xml.end_element();
}
// We skip the default stop generation code.
self.xml.end_element();
continue;
}
}
for window in gradient.stops_ref().windows(2) {
let (start_c, start_t) = window[0];
let (end_c, end_t) = window[1];
self.xml.start_element("stop");
self.xml.write_attribute("offset", &start_t.repr());
self.xml.write_attribute("stop-color", &start_c.to_hex());
self.xml.end_element();
// Generate (256 / len) stops between the two stops.
// This is a workaround for a bug in many readers:
// They tend to just ignore the color space of the gradient.
// The goal is to have smooth gradients but not to balloon the file size
// too much if there are already a lot of stops as in most presets.
let len = if gradient.anti_alias() {
(256 / gradient.stops_ref().len() as u32).max(2)
} else {
2
};
for i in 1..(len - 1) {
let t0 = i as f64 / (len - 1) as f64;
let t = start_t + (end_t - start_t) * t0;
let c = gradient.sample(RatioOrAngle::Ratio(t));
self.xml.start_element("stop");
self.xml.write_attribute("offset", &t.repr());
self.xml.write_attribute("stop-color", &c.to_hex());
self.xml.end_element();
}
self.xml.start_element("stop");
self.xml.write_attribute("offset", &end_t.repr());
self.xml.write_attribute("stop-color", &end_c.to_hex());
self.xml.end_element()
}
self.xml.end_element();
}
self.xml.end_element()
}
/// Write the sub-gradients that are used for conic gradients.
pub(super) fn write_subgradients(&mut self) {
if self.conic_subgradients.is_empty() {
return;
}
self.xml.start_element("defs");
self.xml.write_attribute("id", "subgradients");
for (id, gradient) in self.conic_subgradients.iter() {
let x1 = 2.0 - gradient.t0.cos() as f32 + gradient.center.x.get() as f32;
let y1 = gradient.t0.sin() as f32 + gradient.center.y.get() as f32;
let x2 = 2.0 - gradient.t1.cos() as f32 + gradient.center.x.get() as f32;
let y2 = gradient.t1.sin() as f32 + gradient.center.y.get() as f32;
self.xml.start_element("linearGradient");
self.xml.write_attribute("id", &id);
self.xml.write_attribute("gradientUnits", "objectBoundingBox");
self.xml.write_attribute("x1", &x1);
self.xml.write_attribute("y1", &y1);
self.xml.write_attribute("x2", &x2);
self.xml.write_attribute("y2", &y2);
self.xml.start_element("stop");
self.xml.write_attribute("offset", "0%");
self.xml.write_attribute("stop-color", &gradient.c0.to_hex());
self.xml.end_element();
self.xml.start_element("stop");
self.xml.write_attribute("offset", "100%");
self.xml.write_attribute("stop-color", &gradient.c1.to_hex());
self.xml.end_element();
self.xml.end_element();
}
self.xml.end_element();
}
pub(super) fn write_gradient_refs(&mut self) {
if self.gradient_refs.is_empty() {
return;
}
self.xml.start_element("defs");
self.xml.write_attribute("id", "gradient-refs");
for (id, gradient_ref) in self.gradient_refs.iter() {
match gradient_ref.kind {
GradientKind::Linear => {
self.xml.start_element("linearGradient");
self.xml.write_attribute(
"gradientTransform",
&SvgMatrix(gradient_ref.transform),
);
}
GradientKind::Radial => {
self.xml.start_element("radialGradient");
self.xml.write_attribute(
"gradientTransform",
&SvgMatrix(gradient_ref.transform),
);
}
GradientKind::Conic => {
self.xml.start_element("pattern");
self.xml.write_attribute(
"patternTransform",
&SvgMatrix(gradient_ref.transform),
);
}
}
self.xml.write_attribute("id", &id);
// Writing the href attribute to the "reference" gradient.
self.xml
.write_attribute_fmt("href", format_args!("#{}", gradient_ref.id));
// Also writing the xlink:href attribute for compatibility.
self.xml
.write_attribute_fmt("xlink:href", format_args!("#{}", gradient_ref.id));
self.xml.end_element();
}
self.xml.end_element();
}
/// Write the raw gradients (without transform) to the SVG file.
pub(super) fn write_patterns(&mut self) {
if self.patterns.is_empty() {
return;
}
self.xml.start_element("defs");
self.xml.write_attribute("id", "patterns");
for (id, pattern) in
self.patterns.iter().map(|(i, p)| (i, p.clone())).collect::<Vec<_>>()
{
let size = pattern.size() + pattern.spacing();
self.xml.start_element("pattern");
self.xml.write_attribute("id", &id);
self.xml.write_attribute("width", &size.x.to_pt());
self.xml.write_attribute("height", &size.y.to_pt());
self.xml.write_attribute("patternUnits", "userSpaceOnUse");
self.xml.write_attribute_fmt(
"viewBox",
format_args!("0 0 {:.3} {:.3}", size.x.to_pt(), size.y.to_pt()),
);
// Render the frame.
let state = State::new(size, Transform::identity());
let ts = Transform::identity();
self.render_frame(state, ts, pattern.frame());
self.xml.end_element();
}
self.xml.end_element()
}
/// Writes the references to the deduplicated patterns for each usage site.
pub(super) fn write_pattern_refs(&mut self) {
if self.pattern_refs.is_empty() {
return;
}
self.xml.start_element("defs");
self.xml.write_attribute("id", "pattern-refs");
for (id, pattern_ref) in self.pattern_refs.iter() {
self.xml.start_element("pattern");
self.xml
.write_attribute("patternTransform", &SvgMatrix(pattern_ref.transform));
self.xml.write_attribute("id", &id);
// Writing the href attribute to the "reference" pattern.
self.xml
.write_attribute_fmt("href", format_args!("#{}", pattern_ref.id));
// Also writing the xlink:href attribute for compatibility.
self.xml
.write_attribute_fmt("xlink:href", format_args!("#{}", pattern_ref.id));
self.xml.end_element();
}
self.xml.end_element();
}
}
/// A reference to a deduplicated pattern, with a transform matrix.
///
/// Allows patterns to be reused across multiple invocations,
/// simply by changing the transform matrix.
#[derive(Hash)]
pub struct PatternRef {
/// The ID of the deduplicated gradient
id: Id,
/// The transform matrix to apply to the pattern.
transform: Transform,
/// The ratio of the size of the cell to the size of the filled area.
ratio: Axes<Ratio>,
}
/// A reference to a deduplicated gradient, with a transform matrix.
///
/// Allows gradients to be reused across multiple invocations,
/// simply by changing the transform matrix.
#[derive(Hash)]
pub struct GradientRef {
/// The ID of the deduplicated gradient
id: Id,
/// The gradient kind (used to determine the SVG element to use)
/// but without needing to clone the entire gradient.
kind: GradientKind,
/// The transform matrix to apply to the gradient.
transform: Transform,
}
/// A subgradient for conic gradients.
#[derive(Hash)]
pub struct SVGSubGradient {
/// The center point of the gradient.
center: Axes<Ratio>,
/// The start point of the subgradient.
t0: Angle,
/// The end point of the subgradient.
t1: Angle,
/// The color at the start point of the subgradient.
c0: Color,
/// The color at the end point of the subgradient.
c1: Color,
}
/// The kind of linear gradient.
#[derive(Hash, Clone, Copy, PartialEq, Eq)]
enum GradientKind {
/// A linear gradient.
Linear,
/// A radial gradient.
Radial,
/// A conic gradient.
Conic,
}
impl From<&Gradient> for GradientKind {
fn from(value: &Gradient) -> Self {
match value {
Gradient::Linear { .. } => GradientKind::Linear,
Gradient::Radial { .. } => GradientKind::Radial,
Gradient::Conic { .. } => GradientKind::Conic,
}
}
}
/// Encode the color as an SVG color.
pub trait ColorEncode {
/// Encode the color.
fn encode(&self) -> EcoString;
}
impl ColorEncode for Color {
fn encode(&self) -> EcoString {
match *self {
c @ Color::Rgb(_)
| c @ Color::Luma(_)
| c @ Color::Cmyk(_)
| c @ Color::Hsv(_) => c.to_hex(),
Color::LinearRgb(rgb) => {
if rgb.alpha != 1.0 {
eco_format!(
"color(srgb-linear {:.5} {:.5} {:.5} / {:.5})",
rgb.red,
rgb.green,
rgb.blue,
rgb.alpha
)
} else {
eco_format!(
"color(srgb-linear {:.5} {:.5} {:.5})",
rgb.red,
rgb.green,
rgb.blue,
)
}
}
Color::Oklab(oklab) => {
if oklab.alpha != 1.0 {
eco_format!(
"oklab({:.3}% {:.5} {:.5} / {:.5})",
oklab.l * 100.0,
oklab.a,
oklab.b,
oklab.alpha
)
} else {
eco_format!(
"oklab({:.3}% {:.5} {:.5})",
oklab.l * 100.0,
oklab.a,
oklab.b,
)
}
}
Color::Oklch(oklch) => {
if oklch.alpha != 1.0 {
eco_format!(
"oklch({:.3}% {:.5} {:.3}deg / {:.3})",
oklch.l * 100.0,
oklch.chroma,
oklch.hue.into_degrees(),
oklch.alpha
)
} else {
eco_format!(
"oklch({:.3}% {:.5} {:.3}deg)",
oklch.l * 100.0,
oklch.chroma,
oklch.hue.into_degrees(),
)
}
}
Color::Hsl(hsl) => {
if hsl.alpha != 1.0 {
eco_format!(
"hsla({:.3}deg {:.3}% {:.3}% / {:.5})",
hsl.hue.into_degrees(),
hsl.saturation * 100.0,
hsl.lightness * 100.0,
hsl.alpha,
)
} else {
eco_format!(
"hsl({:.3}deg {:.3}% {:.3}%)",
hsl.hue.into_degrees(),
hsl.saturation * 100.0,
hsl.lightness * 100.0,
)
}
}
}
}
}
/// Maps a coordinate in a unit size square to a coordinate in the pattern.
pub fn correct_pattern_pos(x: f32) -> f32 {
(x + 0.5) / 2.0
}