2023-03-13 21:40:06 +01:00

1370 lines
44 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use unicode_bidi::{BidiInfo, Level as BidiLevel};
use unicode_script::{Script, UnicodeScript};
use xi_unicode::LineBreakIterator;
use typst::model::StyledNode;
use super::{BoxNode, HNode, Sizing, Spacing};
use crate::layout::AlignNode;
use crate::math::FormulaNode;
use crate::prelude::*;
use crate::text::{
shape, LinebreakNode, Quoter, Quotes, ShapedText, SmartQuoteNode, SpaceNode, TextNode,
};
/// Arrange text, spacing and inline-level nodes into a paragraph.
///
/// Although this function is primarily used in set rules to affect paragraph
/// properties, it can also be used to explicitly render its argument onto a
/// paragraph of its own.
///
/// ## Example
/// ```example
/// #set par(indent: 1em, justify: true)
/// #show par: set block(spacing: 0.65em)
///
/// We proceed by contradiction.
/// Suppose that there exists a set
/// of positive integers $a$, $b$, and
/// $c$ that satisfies the equation
/// $a^n + b^n = c^n$ for some
/// integer value of $n > 2$.
///
/// Without loss of generality,
/// let $a$ be the smallest of the
/// three integers. Then, we ...
/// ```
///
/// Display: Paragraph
/// Category: layout
#[node(Construct)]
pub struct ParNode {
/// The indent the first line of a consecutive paragraph should have.
///
/// The first paragraph on a page will never be indented.
///
/// By typographic convention, paragraph breaks are indicated by either some
/// space between paragraphs or indented first lines. Consider turning the
/// [paragraph spacing]($func/block.spacing) off when using this property
/// (e.g. using `[#show par: set block(spacing: 0pt)]`).
#[resolve]
pub indent: Length,
/// The spacing between lines.
///
/// The default value is `{0.65em}`.
#[resolve]
#[default(Em::new(0.65).into())]
pub leading: Length,
/// Whether to justify text in its line.
///
/// Hyphenation will be enabled for justified paragraphs if the [text
/// property hyphenate]($func/text.hyphenate) is set to `{auto}` and the
/// current language is known.
///
/// Note that the current [alignment]($func/align) still has an effect on
/// the placement of the last line except if it ends with a [justified line
/// break]($func/linebreak.justify).
#[default(false)]
pub justify: bool,
/// How to determine line breaks.
///
/// When this property is set to `{auto}`, its default value, optimized line
/// breaks will be used for justified paragraphs. Enabling optimized line
/// breaks for ragged paragraphs may also be worthwhile to improve the
/// appearance of the text.
///
/// ```example
/// #set page(width: 190pt)
/// #set par(linebreaks: "simple")
/// Some texts are frustratingly
/// challenging to break in a
/// visually pleasing way. This
/// very aesthetic example is one
/// of them.
///
/// #set par(linebreaks: "optimized")
/// Some texts are frustratingly
/// challenging to break in a
/// visually pleasing way. This
/// very aesthetic example is one
/// of them.
/// ```
#[default]
pub linebreaks: Smart<Linebreaks>,
/// The contents of the paragraph.
#[external]
pub body: Content,
/// The paragraph's children.
#[internal]
#[variadic]
pub children: Vec<Content>,
}
impl Construct for ParNode {
fn construct(_: &Vm, args: &mut Args) -> SourceResult<Content> {
// The paragraph constructor is special: It doesn't create a paragraph
// node. Instead, it just ensures that the passed content lives in a
// separate paragraph and styles it.
let styles = Self::set(args)?;
let body = args.expect::<Content>("body")?;
Ok(Content::sequence(vec![
ParbreakNode::new().pack(),
body.styled_with_map(styles),
ParbreakNode::new().pack(),
]))
}
}
impl ParNode {
/// Layout the paragraph into a collection of lines.
pub fn layout(
&self,
vt: &mut Vt,
styles: StyleChain,
consecutive: bool,
region: Size,
expand: bool,
) -> SourceResult<Fragment> {
#[comemo::memoize]
fn cached(
par: &ParNode,
world: Tracked<dyn World>,
provider: TrackedMut<StabilityProvider>,
introspector: Tracked<Introspector>,
styles: StyleChain,
consecutive: bool,
region: Size,
expand: bool,
) -> SourceResult<Fragment> {
let mut vt = Vt { world, provider, introspector };
let children = par.children();
// Collect all text into one string for BiDi analysis.
let (text, segments, spans) = collect(&children, &styles, consecutive)?;
// Perform BiDi analysis and then prepare paragraph layout by building a
// representation on which we can do line breaking without layouting
// each and every line from scratch.
let p = prepare(&mut vt, &children, &text, segments, spans, styles, region)?;
// Break the paragraph into lines.
let lines = linebreak(&vt, &p, region.x);
// Stack the lines into one frame per region.
finalize(&mut vt, &p, &lines, region, expand)
}
cached(
self,
vt.world,
TrackedMut::reborrow_mut(&mut vt.provider),
vt.introspector,
styles,
consecutive,
region,
expand,
)
}
}
/// A horizontal alignment.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
pub struct HorizontalAlign(pub GenAlign);
cast_from_value! {
HorizontalAlign,
align: GenAlign => match align.axis() {
Axis::X => Self(align),
Axis::Y => Err("must be horizontal")?,
},
}
impl Resolve for HorizontalAlign {
type Output = Align;
fn resolve(self, styles: StyleChain) -> Self::Output {
self.0.resolve(styles)
}
}
/// How to determine line breaks in a paragraph.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash, Cast)]
pub enum Linebreaks {
/// Determine the line breaks in a simple first-fit style.
Simple,
/// Optimize the line breaks for the whole paragraph.
///
/// Typst will try to produce more evenly filled lines of text by
/// considering the whole paragraph when calculating line breaks.
Optimized,
}
/// A paragraph break.
///
/// This starts a new paragraph. Especially useful when used within code like
/// [for loops]($scripting/#loops). Multiple consecutive
/// paragraph breaks collapse into a single one.
///
/// ## Example
/// ```example
/// #for i in range(3) {
/// [Blind text #i: ]
/// lorem(5)
/// parbreak()
/// }
/// ```
///
/// ## Syntax
/// Instead of calling this function, you can insert a blank line into your
/// markup to create a paragraph break.
///
/// Display: Paragraph Break
/// Category: layout
#[node(Unlabellable)]
pub struct ParbreakNode {}
impl Unlabellable for ParbreakNode {}
/// Range of a substring of text.
type Range = std::ops::Range<usize>;
// The characters by which spacing, inline content and pins are replaced in the
// paragraph's full text.
const SPACING_REPLACE: char = ' '; // Space
const NODE_REPLACE: char = '\u{FFFC}'; // Object Replacement Character
/// A paragraph representation in which children are already layouted and text
/// is already preshaped.
///
/// In many cases, we can directly reuse these results when constructing a line.
/// Only when a line break falls onto a text index that is not safe-to-break per
/// rustybuzz, we have to reshape that portion.
struct Preparation<'a> {
/// Bidirectional text embedding levels for the paragraph.
bidi: BidiInfo<'a>,
/// Text runs, spacing and layouted nodes.
items: Vec<Item<'a>>,
/// The span mapper.
spans: SpanMapper,
/// The styles shared by all children.
styles: StyleChain<'a>,
/// Whether to hyphenate if it's the same for all children.
hyphenate: Option<bool>,
/// The text language if it's the same for all children.
lang: Option<Lang>,
/// The paragraph's resolved alignment.
align: Align,
/// Whether to justify the paragraph.
justify: bool,
}
impl<'a> Preparation<'a> {
/// Find the item that contains the given `text_offset`.
fn find(&self, text_offset: usize) -> Option<&Item<'a>> {
let mut cursor = 0;
for item in &self.items {
let end = cursor + item.len();
if (cursor..end).contains(&text_offset) {
return Some(item);
}
cursor = end;
}
None
}
/// Return the items that intersect the given `text_range`.
///
/// Returns the expanded range around the items and the items.
fn slice(&self, text_range: Range) -> (Range, &[Item<'a>]) {
let mut cursor = 0;
let mut start = 0;
let mut end = 0;
let mut expanded = text_range.clone();
for (i, item) in self.items.iter().enumerate() {
if cursor <= text_range.start {
start = i;
expanded.start = cursor;
}
let len = item.len();
if cursor < text_range.end || cursor + len <= text_range.end {
end = i + 1;
expanded.end = cursor + len;
} else {
break;
}
cursor += len;
}
(expanded, &self.items[start..end])
}
}
/// A segment of one or multiple collapsed children.
#[derive(Debug, Copy, Clone)]
enum Segment<'a> {
/// One or multiple collapsed text or text-equivalent children. Stores how
/// long the segment is (in bytes of the full text string).
Text(usize),
/// Horizontal spacing between other segments.
Spacing(Spacing),
/// A math formula.
Formula(&'a FormulaNode),
/// A box with arbitrary content.
Box(&'a BoxNode, bool),
}
impl Segment<'_> {
/// The text length of the item.
fn len(&self) -> usize {
match *self {
Self::Text(len) => len,
Self::Spacing(_) => SPACING_REPLACE.len_utf8(),
Self::Box(_, true) => SPACING_REPLACE.len_utf8(),
Self::Formula(_) | Self::Box(_, _) => NODE_REPLACE.len_utf8(),
}
}
}
/// A prepared item in a paragraph layout.
#[derive(Debug)]
enum Item<'a> {
/// A shaped text run with consistent style and direction.
Text(ShapedText<'a>),
/// Absolute spacing between other items.
Absolute(Abs),
/// Fractional spacing between other items.
Fractional(Fr, Option<(&'a BoxNode, StyleChain<'a>)>),
/// Layouted inline-level content.
Frame(Frame),
}
impl<'a> Item<'a> {
/// If this a text item, return it.
fn text(&self) -> Option<&ShapedText<'a>> {
match self {
Self::Text(shaped) => Some(shaped),
_ => None,
}
}
/// The text length of the item.
fn len(&self) -> usize {
match self {
Self::Text(shaped) => shaped.text.len(),
Self::Absolute(_) | Self::Fractional(_, _) => SPACING_REPLACE.len_utf8(),
Self::Frame(_) => NODE_REPLACE.len_utf8(),
}
}
/// The natural layouted width of the item.
fn width(&self) -> Abs {
match self {
Self::Text(shaped) => shaped.width,
Self::Absolute(v) => *v,
Self::Frame(frame) => frame.width(),
Self::Fractional(_, _) => Abs::zero(),
}
}
}
/// Maps byte offsets back to spans.
pub struct SpanMapper(Vec<(usize, Span)>);
impl SpanMapper {
/// Create a new span mapper.
pub fn new() -> Self {
Self(vec![])
}
/// Push a span for a segment with the given length.
pub fn push(&mut self, len: usize, span: Span) {
self.0.push((len, span));
}
/// Determine the span at the given byte offset.
///
/// May return a detached span.
pub fn span_at(&self, offset: usize) -> (Span, u16) {
let mut cursor = 0;
for &(len, span) in &self.0 {
if (cursor..=cursor + len).contains(&offset) {
return (span, u16::try_from(offset - cursor).unwrap_or(0));
}
cursor += len;
}
(Span::detached(), 0)
}
}
/// A layouted line, consisting of a sequence of layouted paragraph items that
/// are mostly borrowed from the preparation phase. This type enables you to
/// measure the size of a line in a range before comitting to building the
/// line's frame.
///
/// At most two paragraph items must be created individually for this line: The
/// first and last one since they may be broken apart by the start or end of the
/// line, respectively. But even those can partially reuse previous results when
/// the break index is safe-to-break per rustybuzz.
struct Line<'a> {
/// Bidi information about the paragraph.
bidi: &'a BidiInfo<'a>,
/// The trimmed range the line spans in the paragraph.
trimmed: Range,
/// The untrimmed end where the line ends.
end: usize,
/// A reshaped text item if the line sliced up a text item at the start.
first: Option<Item<'a>>,
/// Inner items which don't need to be reprocessed.
inner: &'a [Item<'a>],
/// A reshaped text item if the line sliced up a text item at the end. If
/// there is only one text item, this takes precedence over `first`.
last: Option<Item<'a>>,
/// The width of the line.
width: Abs,
/// Whether the line should be justified.
justify: bool,
/// Whether the line ends with a hyphen or dash, either naturally or through
/// hyphenation.
dash: bool,
}
impl<'a> Line<'a> {
/// Iterate over the line's items.
fn items(&self) -> impl Iterator<Item = &Item<'a>> {
self.first.iter().chain(self.inner).chain(&self.last)
}
/// Return items that intersect the given `text_range`.
fn slice(&self, text_range: Range) -> impl Iterator<Item = &Item<'a>> {
let mut cursor = self.trimmed.start;
let mut start = 0;
let mut end = 0;
for (i, item) in self.items().enumerate() {
if cursor <= text_range.start {
start = i;
}
let len = item.len();
if cursor < text_range.end || cursor + len <= text_range.end {
end = i + 1;
} else {
break;
}
cursor += len;
}
self.items().skip(start).take(end - start)
}
/// How many justifiable glyphs the line contains.
fn justifiables(&self) -> usize {
let mut count = 0;
for shaped in self.items().filter_map(Item::text) {
count += shaped.justifiables();
}
count
}
/// How much of the line is stretchable spaces.
fn stretch(&self) -> Abs {
let mut stretch = Abs::zero();
for shaped in self.items().filter_map(Item::text) {
stretch += shaped.stretch();
}
stretch
}
/// The sum of fractions in the line.
fn fr(&self) -> Fr {
self.items()
.filter_map(|item| match item {
Item::Fractional(fr, _) => Some(*fr),
_ => None,
})
.sum()
}
}
/// Collect all text of the paragraph into one string. This also performs
/// string-level preprocessing like case transformations.
fn collect<'a>(
children: &'a [Content],
styles: &'a StyleChain<'a>,
consecutive: bool,
) -> SourceResult<(String, Vec<(Segment<'a>, StyleChain<'a>)>, SpanMapper)> {
let mut full = String::new();
let mut quoter = Quoter::new();
let mut segments = vec![];
let mut spans = SpanMapper::new();
let mut iter = children.iter().peekable();
if consecutive {
let indent = ParNode::indent_in(*styles);
if !indent.is_zero()
&& children
.iter()
.find_map(|child| {
if child.with::<dyn Behave>().map_or(false, |behaved| {
behaved.behaviour() == Behaviour::Ignorant
}) {
None
} else if child.is::<TextNode>() || child.is::<SmartQuoteNode>() {
Some(true)
} else {
Some(false)
}
})
.unwrap_or_default()
{
full.push(SPACING_REPLACE);
segments.push((Segment::Spacing(indent.into()), *styles));
}
}
while let Some(mut child) = iter.next() {
let outer = styles;
let mut styles = *styles;
if let Some(node) = child.to::<StyledNode>() {
child = Box::leak(Box::new(node.body()));
styles = outer.chain(Box::leak(Box::new(node.styles())));
}
let segment = if child.is::<SpaceNode>() {
full.push(' ');
Segment::Text(1)
} else if let Some(node) = child.to::<TextNode>() {
let prev = full.len();
if let Some(case) = TextNode::case_in(styles) {
full.push_str(&case.apply(&node.text()));
} else {
full.push_str(&node.text());
}
Segment::Text(full.len() - prev)
} else if let Some(node) = child.to::<HNode>() {
full.push(SPACING_REPLACE);
Segment::Spacing(node.amount())
} else if let Some(node) = child.to::<LinebreakNode>() {
let c = if node.justify(styles) { '\u{2028}' } else { '\n' };
full.push(c);
Segment::Text(c.len_utf8())
} else if let Some(node) = child.to::<SmartQuoteNode>() {
let prev = full.len();
if SmartQuoteNode::enabled_in(styles) {
let lang = TextNode::lang_in(styles);
let region = TextNode::region_in(styles);
let quotes = Quotes::from_lang(lang, region);
let peeked = iter.peek().and_then(|child| {
if let Some(node) = child.to::<TextNode>() {
node.text().chars().next()
} else if child.is::<SmartQuoteNode>() {
Some('"')
} else if child.is::<SpaceNode>() || child.is::<HNode>() {
Some(SPACING_REPLACE)
} else {
Some(NODE_REPLACE)
}
});
full.push_str(quoter.quote(&quotes, node.double(styles), peeked));
} else {
full.push(if node.double(styles) { '"' } else { '\'' });
}
Segment::Text(full.len() - prev)
} else if let Some(node) = child.to::<FormulaNode>() {
full.push(NODE_REPLACE);
Segment::Formula(node)
} else if let Some(node) = child.to::<BoxNode>() {
let frac = node.width(styles).is_fractional();
full.push(if frac { SPACING_REPLACE } else { NODE_REPLACE });
Segment::Box(node, frac)
} else {
bail!(child.span(), "unexpected paragraph child");
};
if let Some(last) = full.chars().last() {
quoter.last(last);
}
spans.push(segment.len(), child.span());
if let (Some((Segment::Text(last_len), last_styles)), Segment::Text(len)) =
(segments.last_mut(), segment)
{
if *last_styles == styles {
*last_len += len;
continue;
}
}
segments.push((segment, styles));
}
Ok((full, segments, spans))
}
/// Prepare paragraph layout by shaping the whole paragraph and layouting all
/// contained inline-level content.
fn prepare<'a>(
vt: &mut Vt,
children: &'a [Content],
text: &'a str,
segments: Vec<(Segment<'a>, StyleChain<'a>)>,
spans: SpanMapper,
styles: StyleChain<'a>,
region: Size,
) -> SourceResult<Preparation<'a>> {
let bidi = BidiInfo::new(
text,
match TextNode::dir_in(styles) {
Dir::LTR => Some(BidiLevel::ltr()),
Dir::RTL => Some(BidiLevel::rtl()),
_ => None,
},
);
let mut cursor = 0;
let mut items = vec![];
// Shape / layout the children and collect them into items.
for (segment, styles) in segments {
let end = cursor + segment.len();
match segment {
Segment::Text(_) => {
shape_range(&mut items, vt, &bidi, cursor..end, &spans, styles);
}
Segment::Spacing(spacing) => match spacing {
Spacing::Rel(v) => {
let resolved = v.resolve(styles).relative_to(region.x);
items.push(Item::Absolute(resolved));
}
Spacing::Fr(v) => {
items.push(Item::Fractional(v, None));
}
},
Segment::Formula(formula) => {
let pod = Regions::one(region, Axes::splat(false));
let mut frame = formula.layout(vt, styles, pod)?.into_frame();
frame.translate(Point::with_y(TextNode::baseline_in(styles)));
items.push(Item::Frame(frame));
}
Segment::Box(node, _) => {
if let Sizing::Fr(v) = node.width(styles) {
items.push(Item::Fractional(v, Some((node, styles))));
} else {
let pod = Regions::one(region, Axes::splat(false));
let mut frame = node.layout(vt, styles, pod)?.into_frame();
frame.translate(Point::with_y(TextNode::baseline_in(styles)));
items.push(Item::Frame(frame));
}
}
}
cursor = end;
}
Ok(Preparation {
bidi,
items,
spans,
styles,
hyphenate: shared_get(styles, children, TextNode::hyphenate_in),
lang: shared_get(styles, children, TextNode::lang_in),
align: AlignNode::alignment_in(styles).x.resolve(styles),
justify: ParNode::justify_in(styles),
})
}
/// Group a range of text by BiDi level and script, shape the runs and generate
/// items for them.
fn shape_range<'a>(
items: &mut Vec<Item<'a>>,
vt: &Vt,
bidi: &BidiInfo<'a>,
range: Range,
spans: &SpanMapper,
styles: StyleChain<'a>,
) {
let mut process = |range: Range, level: BidiLevel| {
let dir = if level.is_ltr() { Dir::LTR } else { Dir::RTL };
let shaped = shape(vt, range.start, &bidi.text[range], spans, styles, dir);
items.push(Item::Text(shaped));
};
let mut prev_level = BidiLevel::ltr();
let mut prev_script = Script::Unknown;
let mut cursor = range.start;
// Group by embedding level and script.
for i in cursor..range.end {
if !bidi.text.is_char_boundary(i) {
continue;
}
let level = bidi.levels[i];
let script =
bidi.text[i..].chars().next().map_or(Script::Unknown, |c| c.script());
if level != prev_level || !is_compatible(script, prev_script) {
if cursor < i {
process(cursor..i, prev_level);
}
cursor = i;
prev_level = level;
prev_script = script;
} else if is_generic_script(prev_script) {
prev_script = script;
}
}
process(cursor..range.end, prev_level);
}
/// Whether this is not a specific script.
fn is_generic_script(script: Script) -> bool {
matches!(script, Script::Unknown | Script::Common | Script::Inherited)
}
/// Whether these script can be part of the same shape run.
fn is_compatible(a: Script, b: Script) -> bool {
is_generic_script(a) || is_generic_script(b) || a == b
}
/// Get a style property, but only if it is the same for all children of the
/// paragraph.
fn shared_get<'a, T: PartialEq>(
styles: StyleChain<'a>,
children: &[Content],
getter: fn(StyleChain) -> T,
) -> Option<T> {
let value = getter(styles);
children
.iter()
.filter_map(|child| child.to::<StyledNode>())
.all(|node| getter(styles.chain(&node.styles())) == value)
.then(|| value)
}
/// Find suitable linebreaks.
fn linebreak<'a>(vt: &Vt, p: &'a Preparation<'a>, width: Abs) -> Vec<Line<'a>> {
let linebreaks = ParNode::linebreaks_in(p.styles).unwrap_or_else(|| {
if ParNode::justify_in(p.styles) {
Linebreaks::Optimized
} else {
Linebreaks::Simple
}
});
match linebreaks {
Linebreaks::Simple => linebreak_simple(vt, p, width),
Linebreaks::Optimized => linebreak_optimized(vt, p, width),
}
}
/// Perform line breaking in simple first-fit style. This means that we build
/// lines greedily, always taking the longest possible line. This may lead to
/// very unbalanced line, but is fast and simple.
fn linebreak_simple<'a>(vt: &Vt, p: &'a Preparation<'a>, width: Abs) -> Vec<Line<'a>> {
let mut lines = vec![];
let mut start = 0;
let mut last = None;
for (end, mandatory, hyphen) in breakpoints(p) {
// Compute the line and its size.
let mut attempt = line(vt, p, start..end, mandatory, hyphen);
// If the line doesn't fit anymore, we push the last fitting attempt
// into the stack and rebuild the line from the attempt's end. The
// resulting line cannot be broken up further.
if !width.fits(attempt.width) {
if let Some((last_attempt, last_end)) = last.take() {
lines.push(last_attempt);
start = last_end;
attempt = line(vt, p, start..end, mandatory, hyphen);
}
}
// Finish the current line if there is a mandatory line break (i.e.
// due to "\n") or if the line doesn't fit horizontally already
// since then no shorter line will be possible.
if mandatory || !width.fits(attempt.width) {
lines.push(attempt);
start = end;
last = None;
} else {
last = Some((attempt, end));
}
}
if let Some((line, _)) = last {
lines.push(line);
}
lines
}
/// Perform line breaking in optimized Knuth-Plass style. Here, we use more
/// context to determine the line breaks than in the simple first-fit style. For
/// example, we might choose to cut a line short even though there is still a
/// bit of space to improve the fit of one of the following lines. The
/// Knuth-Plass algorithm is based on the idea of "cost". A line which has a
/// very tight or very loose fit has a higher cost than one that is just right.
/// Ending a line with a hyphen incurs extra cost and endings two successive
/// lines with hyphens even more.
///
/// To find the layout with the minimal total cost the algorithm uses dynamic
/// programming: For each possible breakpoint it determines the optimal
/// paragraph layout _up to that point_. It walks over all possible start points
/// for a line ending at that point and finds the one for which the cost of the
/// line plus the cost of the optimal paragraph up to the start point (already
/// computed and stored in dynamic programming table) is minimal. The final
/// result is simply the layout determined for the last breakpoint at the end of
/// text.
fn linebreak_optimized<'a>(vt: &Vt, p: &'a Preparation<'a>, width: Abs) -> Vec<Line<'a>> {
/// The cost of a line or paragraph layout.
type Cost = f64;
/// An entry in the dynamic programming table.
struct Entry<'a> {
pred: usize,
total: Cost,
line: Line<'a>,
}
// Cost parameters.
const HYPH_COST: Cost = 0.5;
const CONSECUTIVE_DASH_COST: Cost = 30.0;
const MAX_COST: Cost = 1_000_000.0;
const MIN_COST: Cost = -MAX_COST;
const MIN_RATIO: f64 = -0.15;
// Dynamic programming table.
let mut active = 0;
let mut table = vec![Entry {
pred: 0,
total: 0.0,
line: line(vt, p, 0..0, false, false),
}];
let em = TextNode::size_in(p.styles);
for (end, mandatory, hyphen) in breakpoints(p) {
let k = table.len();
let eof = end == p.bidi.text.len();
let mut best: Option<Entry> = None;
// Find the optimal predecessor.
for (i, pred) in table.iter_mut().enumerate().skip(active) {
// Layout the line.
let start = pred.line.end;
let attempt = line(vt, p, start..end, mandatory, hyphen);
// Determine how much the line's spaces would need to be stretched
// to make it the desired width.
let delta = width - attempt.width;
let mut ratio = delta / attempt.stretch();
if ratio.is_infinite() {
ratio = delta / (em / 2.0);
}
// At some point, it doesn't matter any more.
ratio = ratio.min(10.0);
// Determine the cost of the line.
let min_ratio = if attempt.justify { MIN_RATIO } else { 0.0 };
let mut cost = if ratio < min_ratio {
// The line is overfull. This is the case if
// - justification is on, but we'd need to shrink too much
// - justification is off and the line just doesn't fit
// Since any longer line will also be overfull, we can deactive
// this breakpoint.
active = i + 1;
MAX_COST
} else if mandatory || eof {
// This is a mandatory break and the line is not overfull, so it
// has minimum cost. All breakpoints before this one become
// inactive since no line can span above the mandatory break.
active = k;
MIN_COST + if attempt.justify { ratio.powi(3).abs() } else { 0.0 }
} else {
// Normal line with cost of |ratio^3|.
ratio.powi(3).abs()
};
// Penalize hyphens.
if hyphen {
cost += HYPH_COST;
}
// Penalize two consecutive dashes (not necessarily hyphens) extra.
if attempt.dash && pred.line.dash {
cost += CONSECUTIVE_DASH_COST;
}
// The total cost of this line and its chain of predecessors.
let total = pred.total + cost;
// If this attempt is better than what we had before, take it!
if best.as_ref().map_or(true, |best| best.total >= total) {
best = Some(Entry { pred: i, total, line: attempt });
}
}
table.push(best.unwrap());
}
// Retrace the best path.
let mut lines = vec![];
let mut idx = table.len() - 1;
while idx != 0 {
table.truncate(idx + 1);
let entry = table.pop().unwrap();
lines.push(entry.line);
idx = entry.pred;
}
lines.reverse();
lines
}
/// Determine all possible points in the text where lines can broken.
///
/// Returns for each breakpoint the text index, whether the break is mandatory
/// (after `\n`) and whether a hyphen is required (when breaking inside of a
/// word).
fn breakpoints<'a>(p: &'a Preparation<'a>) -> Breakpoints<'a> {
Breakpoints {
p,
linebreaks: LineBreakIterator::new(p.bidi.text),
syllables: None,
offset: 0,
suffix: 0,
end: 0,
mandatory: false,
}
}
/// An iterator over the line break opportunities in a text.
struct Breakpoints<'a> {
/// The paragraph's items.
p: &'a Preparation<'a>,
/// The inner iterator over the unicode line break opportunities.
linebreaks: LineBreakIterator<'a>,
/// Iterator over syllables of the current word.
syllables: Option<hypher::Syllables<'a>>,
/// The current text offset.
offset: usize,
/// The trimmed end of the current word.
suffix: usize,
/// The untrimmed end of the current word.
end: usize,
/// Whether the break after the current word is mandatory.
mandatory: bool,
}
impl Iterator for Breakpoints<'_> {
type Item = (usize, bool, bool);
fn next(&mut self) -> Option<Self::Item> {
// If we're currently in a hyphenated "word", process the next syllable.
if let Some(syllable) = self.syllables.as_mut().and_then(Iterator::next) {
self.offset += syllable.len();
if self.offset == self.suffix {
self.offset = self.end;
}
// Filter out hyphenation opportunities where hyphenation was
// actually disabled.
let hyphen = self.offset < self.end;
if hyphen && !self.hyphenate(self.offset) {
return self.next();
}
return Some((self.offset, self.mandatory && !hyphen, hyphen));
}
// Get the next "word".
(self.end, self.mandatory) = self.linebreaks.next()?;
// Hyphenate the next word.
if self.p.hyphenate != Some(false) {
if let Some(lang) = self.lang(self.offset) {
let word = &self.p.bidi.text[self.offset..self.end];
let trimmed = word.trim_end_matches(|c: char| !c.is_alphabetic());
if !trimmed.is_empty() {
self.suffix = self.offset + trimmed.len();
self.syllables = Some(hypher::hyphenate(trimmed, lang));
return self.next();
}
}
}
self.offset = self.end;
Some((self.end, self.mandatory, false))
}
}
impl Breakpoints<'_> {
/// Whether hyphenation is enabled at the given offset.
fn hyphenate(&self, offset: usize) -> bool {
self.p
.hyphenate
.or_else(|| {
let shaped = self.p.find(offset)?.text()?;
Some(TextNode::hyphenate_in(shaped.styles))
})
.unwrap_or(false)
}
/// The text language at the given offset.
fn lang(&self, offset: usize) -> Option<hypher::Lang> {
let lang = self.p.lang.or_else(|| {
let shaped = self.p.find(offset)?.text()?;
Some(TextNode::lang_in(shaped.styles))
})?;
let bytes = lang.as_str().as_bytes().try_into().ok()?;
hypher::Lang::from_iso(bytes)
}
}
/// Create a line which spans the given range.
fn line<'a>(
vt: &Vt,
p: &'a Preparation,
mut range: Range,
mandatory: bool,
hyphen: bool,
) -> Line<'a> {
let end = range.end;
let mut justify = p.justify && end < p.bidi.text.len() && !mandatory;
if range.is_empty() {
return Line {
bidi: &p.bidi,
end,
trimmed: range,
first: None,
inner: &[],
last: None,
width: Abs::zero(),
justify,
dash: false,
};
}
// Slice out the relevant items.
let (expanded, mut inner) = p.slice(range.clone());
let mut width = Abs::zero();
// Reshape the last item if it's split in half or hyphenated.
let mut last = None;
let mut dash = false;
if let Some((Item::Text(shaped), before)) = inner.split_last() {
// Compute the range we want to shape, trimming whitespace at the
// end of the line.
let base = expanded.end - shaped.text.len();
let start = range.start.max(base);
let text = &p.bidi.text[start..range.end];
let trimmed = text.trim_end();
range.end = start + trimmed.len();
// Deal with hyphens, dashes and justification.
let shy = trimmed.ends_with('\u{ad}');
dash = hyphen || shy || trimmed.ends_with(['-', '', '—']);
justify |= text.ends_with('\u{2028}');
// Usually, we don't want to shape an empty string because:
// - We don't want the height of trimmed whitespace in a different
// font to be considered for the line height.
// - Even if it's in the same font, its unnecessary.
//
// There is one exception though. When the whole line is empty, we
// need the shaped empty string to make the line the appropriate
// height. That is the case exactly if the string is empty and there
// are no other items in the line.
if hyphen || start + shaped.text.len() > range.end {
if hyphen || start < range.end || before.is_empty() {
let shifted = start - base..range.end - base;
let mut reshaped = shaped.reshape(vt, &p.spans, shifted);
if hyphen || shy {
reshaped.push_hyphen(vt);
}
width += reshaped.width;
last = Some(Item::Text(reshaped));
}
inner = before;
}
}
// Reshape the start item if it's split in half.
let mut first = None;
if let Some((Item::Text(shaped), after)) = inner.split_first() {
// Compute the range we want to shape.
let base = expanded.start;
let end = range.end.min(base + shaped.text.len());
// Reshape if necessary.
if range.start + shaped.text.len() > end {
if range.start < end {
let shifted = range.start - base..end - base;
let reshaped = shaped.reshape(vt, &p.spans, shifted);
width += reshaped.width;
first = Some(Item::Text(reshaped));
}
inner = after;
}
}
// Measure the inner items.
for item in inner {
width += item.width();
}
Line {
bidi: &p.bidi,
trimmed: range,
end,
first,
inner,
last,
width,
justify,
dash,
}
}
/// Combine layouted lines into one frame per region.
fn finalize(
vt: &mut Vt,
p: &Preparation,
lines: &[Line],
region: Size,
expand: bool,
) -> SourceResult<Fragment> {
// Determine the paragraph's width: Full width of the region if we
// should expand or there's fractional spacing, fit-to-width otherwise.
let width = if !region.x.is_finite()
|| (!expand && lines.iter().all(|line| line.fr().is_zero()))
{
lines.iter().map(|line| line.width).max().unwrap_or_default()
} else {
region.x
};
// Stack the lines into one frame per region.
let mut frames: Vec<Frame> = lines
.iter()
.map(|line| commit(vt, p, line, width, region.y))
.collect::<SourceResult<_>>()?;
// Prevent orphans.
let leading = ParNode::leading_in(p.styles);
if frames.len() >= 2 && !frames[1].is_empty() {
let second = frames.remove(1);
let first = &mut frames[0];
merge(first, second, leading);
}
// Prevent widows.
let len = frames.len();
if len >= 2 && !frames[len - 2].is_empty() {
let second = frames.pop().unwrap();
let first = frames.last_mut().unwrap();
merge(first, second, leading);
}
Ok(Fragment::frames(frames))
}
/// Merge two line frames
fn merge(first: &mut Frame, second: Frame, leading: Abs) {
let offset = first.height() + leading;
let total = offset + second.height();
first.push_frame(Point::with_y(offset), second);
first.size_mut().y = total;
}
/// Commit to a line and build its frame.
fn commit(
vt: &mut Vt,
p: &Preparation,
line: &Line,
width: Abs,
full: Abs,
) -> SourceResult<Frame> {
let mut remaining = width - line.width;
let mut offset = Abs::zero();
// Reorder the line from logical to visual order.
let reordered = reorder(line);
// Handle hanging punctuation to the left.
if let Some(Item::Text(text)) = reordered.first() {
if let Some(glyph) = text.glyphs.first() {
if !text.dir.is_positive()
&& TextNode::overhang_in(text.styles)
&& (reordered.len() > 1 || text.glyphs.len() > 1)
{
let amount = overhang(glyph.c) * glyph.x_advance.at(text.size);
offset -= amount;
remaining += amount;
}
}
}
// Handle hanging punctuation to the right.
if let Some(Item::Text(text)) = reordered.last() {
if let Some(glyph) = text.glyphs.last() {
if text.dir.is_positive()
&& TextNode::overhang_in(text.styles)
&& (reordered.len() > 1 || text.glyphs.len() > 1)
{
let amount = overhang(glyph.c) * glyph.x_advance.at(text.size);
remaining += amount;
}
}
}
// Determine how much to justify each space.
let fr = line.fr();
let mut justification = Abs::zero();
if remaining < Abs::zero() || (line.justify && fr.is_zero()) {
let justifiables = line.justifiables();
if justifiables > 0 {
justification = remaining / justifiables as f64;
remaining = Abs::zero();
}
}
let mut top = Abs::zero();
let mut bottom = Abs::zero();
// Build the frames and determine the height and baseline.
let mut frames = vec![];
for item in reordered {
let mut push = |offset: &mut Abs, frame: Frame| {
let width = frame.width();
top.set_max(frame.baseline());
bottom.set_max(frame.size().y - frame.baseline());
frames.push((*offset, frame));
*offset += width;
};
match item {
Item::Absolute(v) => {
offset += *v;
}
Item::Fractional(v, node) => {
let amount = v.share(fr, remaining);
if let Some((node, styles)) = node {
let region = Size::new(amount, full);
let pod = Regions::one(region, Axes::new(true, false));
let mut frame = node.layout(vt, *styles, pod)?.into_frame();
frame.translate(Point::with_y(TextNode::baseline_in(*styles)));
push(&mut offset, frame);
} else {
offset += amount;
}
}
Item::Text(shaped) => {
let frame = shaped.build(vt, justification);
push(&mut offset, frame);
}
Item::Frame(frame) => {
push(&mut offset, frame.clone());
}
}
}
// Remaining space is distributed now.
if !fr.is_zero() {
remaining = Abs::zero();
}
let size = Size::new(width, top + bottom);
let mut output = Frame::new(size);
output.set_baseline(top);
// Construct the line's frame.
for (offset, frame) in frames {
let x = offset + p.align.position(remaining);
let y = top - frame.baseline();
output.push_frame(Point::new(x, y), frame);
}
Ok(output)
}
/// Return a line's items in visual order.
fn reorder<'a>(line: &'a Line<'a>) -> Vec<&Item<'a>> {
let mut reordered = vec![];
// The bidi crate doesn't like empty lines.
if line.trimmed.is_empty() {
return line.slice(line.trimmed.clone()).collect();
}
// Find the paragraph that contains the line.
let para = line
.bidi
.paragraphs
.iter()
.find(|para| para.range.contains(&line.trimmed.start))
.unwrap();
// Compute the reordered ranges in visual order (left to right).
let (levels, runs) = line.bidi.visual_runs(para, line.trimmed.clone());
// Collect the reordered items.
for run in runs {
// Skip reset L1 runs because handling them would require reshaping
// again in some cases.
if line.bidi.levels[run.start] != levels[run.start] {
continue;
}
let prev = reordered.len();
reordered.extend(line.slice(run.clone()));
if levels[run.start].is_rtl() {
reordered[prev..].reverse();
}
}
reordered
}
/// How much a character should hang into the end margin.
///
/// For more discussion, see:
/// https://recoveringphysicist.com/21/
fn overhang(c: char) -> f64 {
match c {
// Dashes.
'' | '—' => 0.2,
'-' => 0.55,
// Punctuation.
'.' | ',' => 0.8,
':' | ';' => 0.3,
// Arabic and Ideographic
'\u{60C}' | '\u{6D4}' => 0.4,
'\u{3001}' | '\u{3002}' => 1.0,
_ => 0.0,
}
}