2023-10-03 19:31:02 +02:00

262 lines
8.0 KiB
Rust

use std::iter::once;
use crate::layout::AlignElem;
use super::*;
pub const TIGHT_LEADING: Em = Em::new(0.25);
#[derive(Debug, Default, Clone)]
pub struct MathRow(Vec<MathFragment>);
impl MathRow {
pub fn new(fragments: Vec<MathFragment>) -> Self {
let iter = fragments.into_iter().peekable();
let mut last: Option<usize> = None;
let mut space: Option<MathFragment> = None;
let mut resolved: Vec<MathFragment> = vec![];
for mut fragment in iter {
match fragment {
// Keep space only if supported by spaced fragments.
MathFragment::Space(_) => {
if last.is_some() {
space = Some(fragment);
}
continue;
}
// Explicit spacing disables automatic spacing.
MathFragment::Spacing(_) => {
last = None;
space = None;
resolved.push(fragment);
continue;
}
// Alignment points are resolved later.
MathFragment::Align => {
resolved.push(fragment);
continue;
}
// New line, new things.
MathFragment::Linebreak => {
resolved.push(fragment);
space = None;
last = None;
continue;
}
_ => {}
}
// Convert variable operators into binary operators if something
// precedes them and they are not preceded by a operator or comparator.
if fragment.class() == Some(MathClass::Vary)
&& matches!(
last.and_then(|i| resolved[i].class()),
Some(
MathClass::Normal
| MathClass::Alphabetic
| MathClass::Closing
| MathClass::Fence
)
)
{
fragment.set_class(MathClass::Binary);
}
// Insert spacing between the last and this item.
if let Some(i) = last {
if let Some(s) = spacing(&resolved[i], space.take(), &fragment) {
resolved.insert(i + 1, s);
}
}
last = Some(resolved.len());
resolved.push(fragment);
}
Self(resolved)
}
pub fn iter(&self) -> std::slice::Iter<'_, MathFragment> {
self.0.iter()
}
/// Extract the sublines of the row.
///
/// It is very unintuitive, but in current state of things, a `MathRow` can
/// contain several actual rows. That function deconstructs it to "single"
/// rows. Hopefully this is only a temporary hack.
pub fn rows(&self) -> Vec<Self> {
self.0
.split(|frag| matches!(frag, MathFragment::Linebreak))
.map(|slice| Self(slice.to_vec()))
.collect()
}
pub fn ascent(&self) -> Abs {
self.iter().map(MathFragment::ascent).max().unwrap_or_default()
}
pub fn descent(&self) -> Abs {
self.iter().map(MathFragment::descent).max().unwrap_or_default()
}
pub fn class(&self) -> MathClass {
// Predict the class of the output of 'into_fragment'
if self.0.len() == 1 {
self.0
.first()
.and_then(|fragment| fragment.class())
.unwrap_or(MathClass::Special)
} else {
// FrameFragment::new() (inside 'into_fragment' in this branch) defaults
// to MathClass::Normal for its class.
MathClass::Normal
}
}
pub fn into_frame(self, ctx: &MathContext) -> Frame {
let styles = ctx.styles();
let align = AlignElem::alignment_in(styles).resolve(styles).x;
self.into_aligned_frame(ctx, &[], align)
}
pub fn into_fragment(self, ctx: &MathContext) -> MathFragment {
if self.0.len() == 1 {
self.0.into_iter().next().unwrap()
} else {
FrameFragment::new(ctx, self.into_frame(ctx)).into()
}
}
pub fn into_aligned_frame(
self,
ctx: &MathContext,
points: &[Abs],
align: FixedAlign,
) -> Frame {
if !self.iter().any(|frag| matches!(frag, MathFragment::Linebreak)) {
return self.into_line_frame(points, align);
}
let leading = if ctx.style.size >= MathSize::Text {
ParElem::leading_in(ctx.styles())
} else {
TIGHT_LEADING.scaled(ctx)
};
let mut rows: Vec<_> = self.rows();
if matches!(rows.last(), Some(row) if row.0.is_empty()) {
rows.pop();
}
let AlignmentResult { points, width } = alignments(&rows);
let mut frame = Frame::soft(Size::zero());
for (i, row) in rows.into_iter().enumerate() {
let sub = row.into_line_frame(&points, align);
let size = frame.size_mut();
if i > 0 {
size.y += leading;
}
let mut pos = Point::with_y(size.y);
if points.is_empty() {
pos.x = align.position(width - sub.width());
}
size.y += sub.height();
size.x.set_max(sub.width());
frame.push_frame(pos, sub);
}
frame
}
fn into_line_frame(self, points: &[Abs], align: FixedAlign) -> Frame {
let ascent = self.ascent();
let mut frame = Frame::soft(Size::new(Abs::zero(), ascent + self.descent()));
frame.set_baseline(ascent);
let mut next_x = {
let mut widths = Vec::new();
if !points.is_empty() && align != FixedAlign::Start {
let mut width = Abs::zero();
for fragment in self.iter() {
if matches!(fragment, MathFragment::Align) {
widths.push(width);
width = Abs::zero();
} else {
width += fragment.width();
}
}
widths.push(width);
}
let widths = widths;
let mut prev_points = once(Abs::zero()).chain(points.iter().copied());
let mut point_widths = points.iter().copied().zip(widths);
let mut alternator = LeftRightAlternator::Right;
move || match align {
FixedAlign::Start => prev_points.next(),
FixedAlign::End => {
point_widths.next().map(|(point, width)| point - width)
}
_ => point_widths
.next()
.zip(prev_points.next())
.zip(alternator.next())
.map(|(((point, width), prev_point), alternator)| match alternator {
LeftRightAlternator::Left => prev_point,
LeftRightAlternator::Right => point - width,
}),
}
};
let mut x = next_x().unwrap_or_default();
for fragment in self.0.into_iter() {
if matches!(fragment, MathFragment::Align) {
x = next_x().unwrap_or(x);
continue;
}
let y = ascent - fragment.ascent();
let pos = Point::new(x, y);
x += fragment.width();
frame.push_frame(pos, fragment.into_frame());
}
frame.size_mut().x = x;
frame
}
}
impl<T: Into<MathFragment>> From<T> for MathRow {
fn from(fragment: T) -> Self {
Self(vec![fragment.into()])
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
enum LeftRightAlternator {
Left,
Right,
}
impl Iterator for LeftRightAlternator {
type Item = LeftRightAlternator;
fn next(&mut self) -> Option<Self::Item> {
let r = Some(*self);
match self {
Self::Left => *self = Self::Right,
Self::Right => *self = Self::Left,
}
r
}
}