typst/src/model/eval.rs
2022-12-31 09:52:14 +01:00

1320 lines
39 KiB
Rust

//! Evaluation of markup into modules.
use std::collections::BTreeMap;
use std::mem;
use std::path::PathBuf;
use comemo::{Track, Tracked};
use unicode_segmentation::UnicodeSegmentation;
use super::{
methods, ops, Arg, Args, Array, CapturesVisitor, Closure, Content, Dict, Func, Label,
LangItems, Recipe, Scope, Scopes, Selector, StyleMap, Transform, Value,
};
use crate::diag::{
bail, error, At, SourceError, SourceResult, StrResult, Trace, Tracepoint,
};
use crate::geom::{Abs, Angle, Em, Fr, Ratio};
use crate::syntax::ast::AstNode;
use crate::syntax::{ast, Source, SourceId, Span, Spanned, SyntaxKind, SyntaxNode, Unit};
use crate::util::{EcoString, PathExt};
use crate::World;
const MAX_ITERATIONS: usize = 10_000;
const MAX_CALL_DEPTH: usize = 256;
/// Evaluate a source file and return the resulting module.
#[comemo::memoize]
pub fn eval(
world: Tracked<dyn World>,
route: Tracked<Route>,
source: &Source,
) -> SourceResult<Module> {
// Prevent cyclic evaluation.
let id = source.id();
if route.contains(id) {
let path = world.source(id).path().display();
panic!("Tried to cyclicly evaluate {}", path);
}
// Hook up the lang items.
let library = world.library();
super::set_lang_items(library.items.clone());
// Evaluate the module.
let route = unsafe { Route::insert(route, id) };
let scopes = Scopes::new(Some(&library.scope));
let mut vm = Vm::new(world, route.track(), id, scopes, 0);
let result = source.ast()?.eval(&mut vm);
// Handle control flow.
if let Some(flow) = vm.flow {
bail!(flow.forbidden());
}
// Assemble the module.
Ok(Module { scope: vm.scopes.top, content: result? })
}
/// A virtual machine.
///
/// Holds the state needed to [evaluate](eval) Typst sources. A new
/// virtual machine is created for each module evaluation and function call.
pub struct Vm<'a> {
/// The compilation environment.
pub(super) world: Tracked<'a, dyn World>,
/// The language items.
pub(super) items: LangItems,
/// The route of source ids the VM took to reach its current location.
pub(super) route: Tracked<'a, Route>,
/// The current location.
pub(super) location: SourceId,
/// A control flow event that is currently happening.
pub(super) flow: Option<Flow>,
/// The stack of scopes.
pub(super) scopes: Scopes<'a>,
/// The current call depth.
pub(super) depth: usize,
}
impl<'a> Vm<'a> {
/// Create a new virtual machine.
pub(super) fn new(
world: Tracked<'a, dyn World>,
route: Tracked<'a, Route>,
location: SourceId,
scopes: Scopes<'a>,
depth: usize,
) -> Self {
Self {
world,
items: world.library().items.clone(),
route,
location,
flow: None,
scopes,
depth,
}
}
/// Access the underlying world.
pub fn world(&self) -> Tracked<'a, dyn World> {
self.world
}
/// Resolve a user-entered path to be relative to the compilation
/// environment's root.
pub fn locate(&self, path: &str) -> StrResult<PathBuf> {
if !self.location.is_detached() {
if let Some(path) = path.strip_prefix('/') {
return Ok(self.world.root().join(path).normalize());
}
if let Some(dir) = self.world.source(self.location).path().parent() {
return Ok(dir.join(path).normalize());
}
}
Err("cannot access file system from here".into())
}
}
/// A control flow event that occurred during evaluation.
#[derive(Debug, Clone, PartialEq)]
pub enum Flow {
/// Stop iteration in a loop.
Break(Span),
/// Skip the remainder of the current iteration in a loop.
Continue(Span),
/// Stop execution of a function early, optionally returning an explicit
/// value.
Return(Span, Option<Value>),
}
impl Flow {
/// Return an error stating that this control flow is forbidden.
pub fn forbidden(&self) -> SourceError {
match *self {
Self::Break(span) => {
error!(span, "cannot break outside of loop")
}
Self::Continue(span) => {
error!(span, "cannot continue outside of loop")
}
Self::Return(span, _) => {
error!(span, "cannot return outside of function")
}
}
}
}
/// A route of source ids.
#[derive(Default)]
pub struct Route {
parent: Option<Tracked<'static, Self>>,
id: Option<SourceId>,
}
impl Route {
/// Create a new route with just one entry.
pub fn new(id: SourceId) -> Self {
Self { id: Some(id), parent: None }
}
/// Insert a new id into the route.
///
/// You must guarantee that `outer` lives longer than the resulting
/// route is ever used.
unsafe fn insert(outer: Tracked<Route>, id: SourceId) -> Route {
Route {
parent: Some(std::mem::transmute(outer)),
id: Some(id),
}
}
}
#[comemo::track]
impl Route {
/// Whether the given id is part of the route.
fn contains(&self, id: SourceId) -> bool {
self.id == Some(id) || self.parent.map_or(false, |parent| parent.contains(id))
}
}
/// An evaluated module, ready for importing or typesetting.
#[derive(Debug, Clone)]
pub struct Module {
/// The top-level definitions that were bound in this module.
pub scope: Scope,
/// The module's layoutable contents.
pub content: Content,
}
/// Evaluate an expression.
pub(super) trait Eval {
/// The output of evaluating the expression.
type Output;
/// Evaluate the expression to the output value.
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output>;
}
impl Eval for ast::Markup {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
eval_markup(vm, &mut self.exprs())
}
}
/// Evaluate a stream of markup.
fn eval_markup(
vm: &mut Vm,
exprs: &mut impl Iterator<Item = ast::Expr>,
) -> SourceResult<Content> {
let flow = vm.flow.take();
let mut seq = Vec::with_capacity(exprs.size_hint().1.unwrap_or_default());
while let Some(expr) = exprs.next() {
match expr {
ast::Expr::Set(set) => {
let styles = set.eval(vm)?;
if vm.flow.is_some() {
break;
}
seq.push(eval_markup(vm, exprs)?.styled_with_map(styles))
}
ast::Expr::Show(show) => {
let recipe = show.eval(vm)?;
if vm.flow.is_some() {
break;
}
let tail = eval_markup(vm, exprs)?;
seq.push(tail.styled_with_recipe(vm.world, recipe)?)
}
expr => match expr.eval(vm)? {
Value::Label(label) => {
if let Some(node) =
seq.iter_mut().rev().find(|node| node.labellable())
{
*node = mem::take(node).labelled(label);
}
}
value => seq.push(value.display().spanned(expr.span())),
},
}
if vm.flow.is_some() {
break;
}
}
if flow.is_some() {
vm.flow = flow;
}
Ok(Content::sequence(seq))
}
impl Eval for ast::Expr {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let forbidden = |name| {
error!(
self.span(),
"{} is only allowed directly in code and content blocks", name
)
};
match self {
Self::Space(v) => v.eval(vm).map(Value::Content),
Self::Linebreak(v) => v.eval(vm).map(Value::Content),
Self::Text(v) => v.eval(vm).map(Value::Content),
Self::Escape(v) => v.eval(vm).map(Value::Content),
Self::Shorthand(v) => v.eval(vm).map(Value::Content),
Self::Symbol(v) => v.eval(vm).map(Value::Content),
Self::SmartQuote(v) => v.eval(vm).map(Value::Content),
Self::Strong(v) => v.eval(vm).map(Value::Content),
Self::Emph(v) => v.eval(vm).map(Value::Content),
Self::Link(v) => v.eval(vm).map(Value::Content),
Self::Raw(v) => v.eval(vm).map(Value::Content),
Self::Ref(v) => v.eval(vm).map(Value::Content),
Self::Heading(v) => v.eval(vm).map(Value::Content),
Self::List(v) => v.eval(vm).map(Value::Content),
Self::Enum(v) => v.eval(vm).map(Value::Content),
Self::Term(v) => v.eval(vm).map(Value::Content),
Self::Atom(v) => v.eval(vm).map(Value::Content),
Self::Script(v) => v.eval(vm).map(Value::Content),
Self::Frac(v) => v.eval(vm).map(Value::Content),
Self::AlignPoint(v) => v.eval(vm).map(Value::Content),
Self::Lit(v) => v.eval(vm),
Self::Ident(v) => v.eval(vm),
Self::Code(v) => v.eval(vm),
Self::Content(v) => v.eval(vm).map(Value::Content),
Self::Math(v) => v.eval(vm).map(Value::Content),
Self::Array(v) => v.eval(vm).map(Value::Array),
Self::Dict(v) => v.eval(vm).map(Value::Dict),
Self::Parenthesized(v) => v.eval(vm),
Self::FieldAccess(v) => v.eval(vm),
Self::FuncCall(v) => v.eval(vm),
Self::MethodCall(v) => v.eval(vm),
Self::Closure(v) => v.eval(vm),
Self::Unary(v) => v.eval(vm),
Self::Binary(v) => v.eval(vm),
Self::Let(v) => v.eval(vm),
Self::Set(_) => bail!(forbidden("set")),
Self::Show(_) => bail!(forbidden("show")),
Self::Conditional(v) => v.eval(vm),
Self::While(v) => v.eval(vm),
Self::For(v) => v.eval(vm),
Self::Import(v) => v.eval(vm),
Self::Include(v) => v.eval(vm).map(Value::Content),
Self::Break(v) => v.eval(vm),
Self::Continue(v) => v.eval(vm),
Self::Return(v) => v.eval(vm),
}
}
}
impl ast::Expr {
fn eval_in_math(&self, vm: &mut Vm) -> SourceResult<Content> {
Ok(match self {
Self::Escape(v) => v.eval_in_math(vm)?,
Self::Shorthand(v) => v.eval_in_math(vm)?,
Self::Symbol(v) => v.eval_in_math(vm)?,
Self::Ident(v) => v.eval_in_math(vm)?,
_ => self.eval(vm)?.display_in_math(),
}
.spanned(self.span()))
}
}
impl Eval for ast::Space {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
Ok(match self.newlines() {
0..=1 => (vm.items.space)(),
_ => (vm.items.parbreak)(),
})
}
}
impl Eval for ast::Linebreak {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
Ok((vm.items.linebreak)())
}
}
impl Eval for ast::Text {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
Ok((vm.items.text)(self.get().clone()))
}
}
impl Eval for ast::Escape {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
Ok((vm.items.text)(self.get().into()))
}
}
impl ast::Escape {
fn eval_in_math(&self, vm: &mut Vm) -> SourceResult<Content> {
Ok((vm.items.math_atom)(self.get().into()))
}
}
impl Eval for ast::Shorthand {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
Ok((vm.items.text)(self.get().into()))
}
}
impl ast::Shorthand {
fn eval_in_math(&self, vm: &mut Vm) -> SourceResult<Content> {
Ok((vm.items.math_atom)(self.get().into()))
}
}
impl Eval for ast::Symbol {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
Ok((vm.items.symbol)(self.get().clone()))
}
}
impl ast::Symbol {
fn eval_in_math(&self, vm: &mut Vm) -> SourceResult<Content> {
Ok((vm.items.symbol)(self.get().clone() + ":op".into()))
}
}
impl Eval for ast::SmartQuote {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
Ok((vm.items.smart_quote)(self.double()))
}
}
impl Eval for ast::Strong {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
Ok((vm.items.strong)(self.body().eval(vm)?))
}
}
impl Eval for ast::Emph {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
Ok((vm.items.emph)(self.body().eval(vm)?))
}
}
impl Eval for ast::Raw {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let text = self.text().clone();
let lang = self.lang().cloned();
let block = self.block();
Ok((vm.items.raw)(text, lang, block))
}
}
impl Eval for ast::Link {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
Ok((vm.items.link)(self.url().clone()))
}
}
impl Eval for ast::Ref {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
Ok((vm.items.ref_)(self.get().clone()))
}
}
impl Eval for ast::Heading {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let level = self.level();
let body = self.body().eval(vm)?;
Ok((vm.items.heading)(level, body))
}
}
impl Eval for ast::ListItem {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
Ok((vm.items.list_item)(self.body().eval(vm)?))
}
}
impl Eval for ast::EnumItem {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let number = self.number();
let body = self.body().eval(vm)?;
Ok((vm.items.enum_item)(number, body))
}
}
impl Eval for ast::TermItem {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let term = self.term().eval(vm)?;
let description = self.description().eval(vm)?;
Ok((vm.items.term_item)(term, description))
}
}
impl Eval for ast::Math {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let seq = self
.exprs()
.map(|expr| expr.eval_in_math(vm))
.collect::<SourceResult<_>>()?;
let block = self.block();
Ok((vm.items.math)(seq, block))
}
}
impl Eval for ast::Atom {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
Ok((vm.items.math_atom)(self.get().clone()))
}
}
impl Eval for ast::Script {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let base = self.base().eval_in_math(vm)?;
let sub = self.sub().map(|expr| expr.eval_in_math(vm)).transpose()?;
let sup = self.sup().map(|expr| expr.eval_in_math(vm)).transpose()?;
Ok((vm.items.math_script)(base, sub, sup))
}
}
impl Eval for ast::Frac {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let num = self.num().eval_in_math(vm)?;
let denom = self.denom().eval_in_math(vm)?;
Ok((vm.items.math_frac)(num, denom))
}
}
impl Eval for ast::AlignPoint {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
Ok((vm.items.math_align_point)(self.count()))
}
}
impl Eval for ast::Lit {
type Output = Value;
fn eval(&self, _: &mut Vm) -> SourceResult<Self::Output> {
Ok(match self.kind() {
ast::LitKind::None => Value::None,
ast::LitKind::Auto => Value::Auto,
ast::LitKind::Bool(v) => Value::Bool(v),
ast::LitKind::Int(v) => Value::Int(v),
ast::LitKind::Float(v) => Value::Float(v),
ast::LitKind::Numeric(v, unit) => match unit {
Unit::Length(unit) => Abs::with_unit(v, unit).into(),
Unit::Angle(unit) => Angle::with_unit(v, unit).into(),
Unit::Em => Em::new(v).into(),
Unit::Fr => Fr::new(v).into(),
Unit::Percent => Ratio::new(v / 100.0).into(),
},
ast::LitKind::Str(v) => Value::Str(v.into()),
ast::LitKind::Label(v) => Value::Label(Label(v)),
})
}
}
impl Eval for ast::Ident {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let value = vm.scopes.get(self).cloned().at(self.span())?;
Ok(match value {
Value::Func(func) => Value::Func(func.spanned(self.span())),
value => value,
})
}
}
impl ast::Ident {
fn eval_in_math(&self, vm: &mut Vm) -> SourceResult<Content> {
if self.as_untyped().len() == self.len()
&& matches!(vm.scopes.get(&self), Ok(Value::Func(_)) | Err(_))
{
Ok((vm.items.symbol)(self.get().clone() + ":op".into()))
} else {
Ok(self.eval(vm)?.display_in_math())
}
}
}
impl Eval for ast::CodeBlock {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
vm.scopes.enter();
let output = eval_code(vm, &mut self.exprs())?;
vm.scopes.exit();
Ok(output)
}
}
/// Evaluate a stream of expressions.
fn eval_code(
vm: &mut Vm,
exprs: &mut impl Iterator<Item = ast::Expr>,
) -> SourceResult<Value> {
let flow = vm.flow.take();
let mut output = Value::None;
while let Some(expr) = exprs.next() {
let span = expr.span();
let value = match expr {
ast::Expr::Set(set) => {
let styles = set.eval(vm)?;
if vm.flow.is_some() {
break;
}
let tail = eval_code(vm, exprs)?.display();
Value::Content(tail.styled_with_map(styles))
}
ast::Expr::Show(show) => {
let recipe = show.eval(vm)?;
if vm.flow.is_some() {
break;
}
let tail = eval_code(vm, exprs)?.display();
Value::Content(tail.styled_with_recipe(vm.world, recipe)?)
}
_ => expr.eval(vm)?,
};
output = ops::join(output, value).at(span)?;
if vm.flow.is_some() {
break;
}
}
if flow.is_some() {
vm.flow = flow;
}
Ok(output)
}
impl Eval for ast::ContentBlock {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
vm.scopes.enter();
let content = self.body().eval(vm)?;
vm.scopes.exit();
Ok(content)
}
}
impl Eval for ast::Parenthesized {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
self.expr().eval(vm)
}
}
impl Eval for ast::Array {
type Output = Array;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let items = self.items();
let mut vec = Vec::with_capacity(items.size_hint().0);
for item in items {
match item {
ast::ArrayItem::Pos(expr) => vec.push(expr.eval(vm)?),
ast::ArrayItem::Spread(expr) => match expr.eval(vm)? {
Value::None => {}
Value::Array(array) => vec.extend(array.into_iter()),
v => bail!(expr.span(), "cannot spread {} into array", v.type_name()),
},
}
}
Ok(Array::from_vec(vec))
}
}
impl Eval for ast::Dict {
type Output = Dict;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let mut map = BTreeMap::new();
for item in self.items() {
match item {
ast::DictItem::Named(named) => {
map.insert(named.name().take().into(), named.expr().eval(vm)?);
}
ast::DictItem::Keyed(keyed) => {
map.insert(keyed.key().into(), keyed.expr().eval(vm)?);
}
ast::DictItem::Spread(expr) => match expr.eval(vm)? {
Value::None => {}
Value::Dict(dict) => map.extend(dict.into_iter()),
v => bail!(
expr.span(),
"cannot spread {} into dictionary",
v.type_name()
),
},
}
}
Ok(Dict::from_map(map))
}
}
impl Eval for ast::Unary {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let value = self.expr().eval(vm)?;
let result = match self.op() {
ast::UnOp::Pos => ops::pos(value),
ast::UnOp::Neg => ops::neg(value),
ast::UnOp::Not => ops::not(value),
};
result.at(self.span())
}
}
impl Eval for ast::Binary {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
match self.op() {
ast::BinOp::Add => self.apply(vm, ops::add),
ast::BinOp::Sub => self.apply(vm, ops::sub),
ast::BinOp::Mul => self.apply(vm, ops::mul),
ast::BinOp::Div => self.apply(vm, ops::div),
ast::BinOp::And => self.apply(vm, ops::and),
ast::BinOp::Or => self.apply(vm, ops::or),
ast::BinOp::Eq => self.apply(vm, ops::eq),
ast::BinOp::Neq => self.apply(vm, ops::neq),
ast::BinOp::Lt => self.apply(vm, ops::lt),
ast::BinOp::Leq => self.apply(vm, ops::leq),
ast::BinOp::Gt => self.apply(vm, ops::gt),
ast::BinOp::Geq => self.apply(vm, ops::geq),
ast::BinOp::In => self.apply(vm, ops::in_),
ast::BinOp::NotIn => self.apply(vm, ops::not_in),
ast::BinOp::Assign => self.assign(vm, |_, b| Ok(b)),
ast::BinOp::AddAssign => self.assign(vm, ops::add),
ast::BinOp::SubAssign => self.assign(vm, ops::sub),
ast::BinOp::MulAssign => self.assign(vm, ops::mul),
ast::BinOp::DivAssign => self.assign(vm, ops::div),
}
}
}
impl ast::Binary {
/// Apply a basic binary operation.
fn apply(
&self,
vm: &mut Vm,
op: fn(Value, Value) -> StrResult<Value>,
) -> SourceResult<Value> {
let lhs = self.lhs().eval(vm)?;
// Short-circuit boolean operations.
if (self.op() == ast::BinOp::And && lhs == Value::Bool(false))
|| (self.op() == ast::BinOp::Or && lhs == Value::Bool(true))
{
return Ok(lhs);
}
let rhs = self.rhs().eval(vm)?;
op(lhs, rhs).at(self.span())
}
/// Apply an assignment operation.
fn assign(
&self,
vm: &mut Vm,
op: fn(Value, Value) -> StrResult<Value>,
) -> SourceResult<Value> {
let rhs = self.rhs().eval(vm)?;
let location = self.lhs().access(vm)?;
let lhs = std::mem::take(&mut *location);
*location = op(lhs, rhs).at(self.span())?;
Ok(Value::None)
}
}
impl Eval for ast::FieldAccess {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let object = self.target().eval(vm)?;
let span = self.field().span();
let field = self.field().take();
Ok(match object {
Value::Dict(dict) => dict.at(&field).at(span)?.clone(),
Value::Content(content) => content
.field(&field)
.ok_or_else(|| format!("unknown field {field:?}"))
.at(span)?,
v => bail!(
self.target().span(),
"expected dictionary or content, found {}",
v.type_name()
),
})
}
}
impl Eval for ast::FuncCall {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
if vm.depth >= MAX_CALL_DEPTH {
bail!(self.span(), "maximum function call depth exceeded");
}
let callee = self.callee();
let callee = callee.eval(vm)?.cast::<Func>().at(callee.span())?;
let args = self.args().eval(vm)?;
let point = || Tracepoint::Call(callee.name().map(Into::into));
callee.call(vm, args).trace(vm.world, point, self.span())
}
}
impl Eval for ast::MethodCall {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let span = self.span();
let method = self.method().take();
let result = if methods::is_mutating(&method) {
let args = self.args().eval(vm)?;
let value = self.target().access(vm)?;
methods::call_mut(value, &method, args, span)
} else {
let value = self.target().eval(vm)?;
let args = self.args().eval(vm)?;
methods::call(vm, value, &method, args, span)
};
let point = || Tracepoint::Call(Some(method.clone()));
result.trace(vm.world, point, span)
}
}
impl Eval for ast::Args {
type Output = Args;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let mut items = Vec::new();
for arg in self.items() {
let span = arg.span();
match arg {
ast::Arg::Pos(expr) => {
items.push(Arg {
span,
name: None,
value: Spanned::new(expr.eval(vm)?, expr.span()),
});
}
ast::Arg::Named(named) => {
items.push(Arg {
span,
name: Some(named.name().take().into()),
value: Spanned::new(named.expr().eval(vm)?, named.expr().span()),
});
}
ast::Arg::Spread(expr) => match expr.eval(vm)? {
Value::None => {}
Value::Array(array) => {
items.extend(array.into_iter().map(|value| Arg {
span,
name: None,
value: Spanned::new(value, span),
}));
}
Value::Dict(dict) => {
items.extend(dict.into_iter().map(|(key, value)| Arg {
span,
name: Some(key),
value: Spanned::new(value, span),
}));
}
Value::Args(args) => items.extend(args.items),
v => bail!(expr.span(), "cannot spread {}", v.type_name()),
},
}
}
Ok(Args { span: self.span(), items })
}
}
impl Eval for ast::Closure {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
// The closure's name is defined by its let binding if there's one.
let name = self.name().map(ast::Ident::take);
// Collect captured variables.
let captured = {
let mut visitor = CapturesVisitor::new(&vm.scopes);
visitor.visit(self.as_untyped());
visitor.finish()
};
let mut params = Vec::new();
let mut sink = None;
// Collect parameters and an optional sink parameter.
for param in self.params() {
match param {
ast::Param::Pos(name) => {
params.push((name.take(), None));
}
ast::Param::Named(named) => {
params.push((named.name().take(), Some(named.expr().eval(vm)?)));
}
ast::Param::Sink(name) => {
if sink.is_some() {
bail!(name.span(), "only one argument sink is allowed");
}
sink = Some(name.take());
}
}
}
// Define the closure.
let closure = Closure {
location: vm.location,
name,
captured,
params,
sink,
body: self.body(),
};
Ok(Value::Func(Func::from_closure(closure, self.span())))
}
}
impl Eval for ast::LetBinding {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let value = match self.init() {
Some(expr) => expr.eval(vm)?,
None => Value::None,
};
vm.scopes.top.define(self.binding().take(), value);
Ok(Value::None)
}
}
impl Eval for ast::SetRule {
type Output = StyleMap;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
if let Some(condition) = self.condition() {
if !condition.eval(vm)?.cast::<bool>().at(condition.span())? {
return Ok(StyleMap::new());
}
}
let target = self.target();
let target = target.eval(vm)?.cast::<Func>().at(target.span())?;
let args = self.args().eval(vm)?;
Ok(target.set(args)?.spanned(self.span()))
}
}
impl Eval for ast::ShowRule {
type Output = Recipe;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let selector = self
.selector()
.map(|sel| sel.eval(vm)?.cast::<Selector>().at(sel.span()))
.transpose()?;
let transform = self.transform();
let span = transform.span();
let transform = match transform {
ast::Expr::Set(set) => Transform::Style(set.eval(vm)?),
expr => expr.eval(vm)?.cast::<Transform>().at(span)?,
};
Ok(Recipe { span, selector, transform })
}
}
impl Eval for ast::Conditional {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let condition = self.condition();
if condition.eval(vm)?.cast::<bool>().at(condition.span())? {
self.if_body().eval(vm)
} else if let Some(else_body) = self.else_body() {
else_body.eval(vm)
} else {
Ok(Value::None)
}
}
}
impl Eval for ast::WhileLoop {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let flow = vm.flow.take();
let mut output = Value::None;
let mut i = 0;
let condition = self.condition();
let body = self.body();
while condition.eval(vm)?.cast::<bool>().at(condition.span())? {
if i == 0
&& is_invariant(condition.as_untyped())
&& !can_diverge(body.as_untyped())
{
bail!(condition.span(), "condition is always true");
} else if i >= MAX_ITERATIONS {
bail!(self.span(), "loop seems to be infinite");
}
let value = body.eval(vm)?;
output = ops::join(output, value).at(body.span())?;
match vm.flow {
Some(Flow::Break(_)) => {
vm.flow = None;
break;
}
Some(Flow::Continue(_)) => vm.flow = None,
Some(Flow::Return(..)) => break,
None => {}
}
i += 1;
}
if flow.is_some() {
vm.flow = flow;
}
Ok(output)
}
}
/// Whether the expression always evaluates to the same value.
fn is_invariant(expr: &SyntaxNode) -> bool {
match expr.cast() {
Some(ast::Expr::Ident(_)) => false,
Some(ast::Expr::MethodCall(call)) => {
is_invariant(call.target().as_untyped())
&& is_invariant(call.args().as_untyped())
}
_ => expr.children().all(is_invariant),
}
}
/// Whether the expression contains a break or return.
fn can_diverge(expr: &SyntaxNode) -> bool {
matches!(expr.kind(), SyntaxKind::Break | SyntaxKind::Return)
|| expr.children().any(can_diverge)
}
impl Eval for ast::ForLoop {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let flow = vm.flow.take();
let mut output = Value::None;
macro_rules! iter {
(for ($($binding:ident => $value:ident),*) in $iter:expr) => {{
vm.scopes.enter();
#[allow(unused_parens)]
for ($($value),*) in $iter {
$(vm.scopes.top.define($binding.clone(), $value);)*
let body = self.body();
let value = body.eval(vm)?;
output = ops::join(output, value).at(body.span())?;
match vm.flow {
Some(Flow::Break(_)) => {
vm.flow = None;
break;
}
Some(Flow::Continue(_)) => vm.flow = None,
Some(Flow::Return(..)) => break,
None => {}
}
}
vm.scopes.exit();
}};
}
let iter = self.iter().eval(vm)?;
let pattern = self.pattern();
let key = pattern.key().map(ast::Ident::take);
let value = pattern.value().take();
match (key, value, iter) {
(None, v, Value::Str(string)) => {
iter!(for (v => value) in string.as_str().graphemes(true));
}
(None, v, Value::Array(array)) => {
iter!(for (v => value) in array.into_iter());
}
(Some(i), v, Value::Array(array)) => {
iter!(for (i => idx, v => value) in array.into_iter().enumerate());
}
(None, v, Value::Dict(dict)) => {
iter!(for (v => value) in dict.into_iter().map(|p| p.1));
}
(Some(k), v, Value::Dict(dict)) => {
iter!(for (k => key, v => value) in dict.into_iter());
}
(None, v, Value::Args(args)) => {
iter!(for (v => value) in args.items.into_iter()
.filter(|arg| arg.name.is_none())
.map(|arg| arg.value.v));
}
(Some(k), v, Value::Args(args)) => {
iter!(for (k => key, v => value) in args.items.into_iter()
.map(|arg| (arg.name.map_or(Value::None, Value::Str), arg.value.v)));
}
(_, _, Value::Str(_)) => {
bail!(pattern.span(), "mismatched pattern");
}
(_, _, iter) => {
bail!(self.iter().span(), "cannot loop over {}", iter.type_name());
}
}
if flow.is_some() {
vm.flow = flow;
}
Ok(output)
}
}
impl Eval for ast::ModuleImport {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let span = self.path().span();
let path = self.path().eval(vm)?.cast::<EcoString>().at(span)?;
let module = import(vm, &path, span)?;
match self.imports() {
ast::Imports::Wildcard => {
for (var, value) in module.scope.iter() {
vm.scopes.top.define(var.clone(), value.clone());
}
}
ast::Imports::Items(idents) => {
for ident in idents {
if let Some(value) = module.scope.get(&ident) {
vm.scopes.top.define(ident.take(), value.clone());
} else {
bail!(ident.span(), "unresolved import");
}
}
}
}
Ok(Value::None)
}
}
impl Eval for ast::ModuleInclude {
type Output = Content;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let span = self.path().span();
let path = self.path().eval(vm)?.cast::<EcoString>().at(span)?;
let module = import(vm, &path, span)?;
Ok(module.content)
}
}
/// Process an import of a module relative to the current location.
fn import(vm: &Vm, path: &str, span: Span) -> SourceResult<Module> {
// Load the source file.
let full = vm.locate(path).at(span)?;
let id = vm.world.resolve(&full).at(span)?;
// Prevent cyclic importing.
if vm.route.contains(id) {
bail!(span, "cyclic import");
}
// Evaluate the file.
let source = vm.world.source(id);
let point = || Tracepoint::Import;
eval(vm.world, vm.route, source).trace(vm.world, point, span)
}
impl Eval for ast::LoopBreak {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
if vm.flow.is_none() {
vm.flow = Some(Flow::Break(self.span()));
}
Ok(Value::None)
}
}
impl Eval for ast::LoopContinue {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
if vm.flow.is_none() {
vm.flow = Some(Flow::Continue(self.span()));
}
Ok(Value::None)
}
}
impl Eval for ast::FuncReturn {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> SourceResult<Self::Output> {
let value = self.body().map(|body| body.eval(vm)).transpose()?;
if vm.flow.is_none() {
vm.flow = Some(Flow::Return(self.span(), value));
}
Ok(Value::None)
}
}
/// Access an expression mutably.
trait Access {
/// Access the value.
fn access<'a>(&self, vm: &'a mut Vm) -> SourceResult<&'a mut Value>;
}
impl Access for ast::Expr {
fn access<'a>(&self, vm: &'a mut Vm) -> SourceResult<&'a mut Value> {
match self {
Self::Ident(v) => v.access(vm),
Self::Parenthesized(v) => v.access(vm),
Self::FieldAccess(v) => v.access(vm),
Self::MethodCall(v) => v.access(vm),
_ => {
let _ = self.eval(vm)?;
bail!(self.span(), "cannot mutate a temporary value");
}
}
}
}
impl Access for ast::Ident {
fn access<'a>(&self, vm: &'a mut Vm) -> SourceResult<&'a mut Value> {
vm.scopes.get_mut(self).at(self.span())
}
}
impl Access for ast::Parenthesized {
fn access<'a>(&self, vm: &'a mut Vm) -> SourceResult<&'a mut Value> {
self.expr().access(vm)
}
}
impl Access for ast::FieldAccess {
fn access<'a>(&self, vm: &'a mut Vm) -> SourceResult<&'a mut Value> {
let value = self.target().access(vm)?;
let Value::Dict(dict) = value else {
bail!(
self.target().span(),
"expected dictionary, found {}",
value.type_name(),
);
};
Ok(dict.at_mut(self.field().take().into()))
}
}
impl Access for ast::MethodCall {
fn access<'a>(&self, vm: &'a mut Vm) -> SourceResult<&'a mut Value> {
let span = self.span();
let method = self.method().take();
let world = vm.world();
if !methods::is_accessor(&method) {
let _ = self.eval(vm)?;
bail!(span, "cannot mutate a temporary value");
}
let args = self.args().eval(vm)?;
let value = self.target().access(vm)?;
let result = methods::call_access(value, &method, args, span);
let point = || Tracepoint::Call(Some(method.clone()));
result.trace(world, point, span)
}
}