typst/src/eval/mod.rs
2022-05-26 17:14:44 +02:00

1073 lines
31 KiB
Rust

//! Evaluation of markup into modules.
#[macro_use]
mod array;
#[macro_use]
mod dict;
#[macro_use]
mod value;
mod args;
mod capture;
mod func;
mod machine;
pub mod methods;
pub mod ops;
mod raw;
mod scope;
mod str;
pub use self::str::*;
pub use args::*;
pub use array::*;
pub use capture::*;
pub use dict::*;
pub use func::*;
pub use machine::*;
pub use raw::*;
pub use scope::*;
pub use typst_macros::node;
pub use value::*;
use std::collections::BTreeMap;
use unicode_segmentation::UnicodeSegmentation;
use crate::diag::{At, StrResult, Trace, Tracepoint, TypResult};
use crate::geom::{Angle, Em, Fraction, Length, Ratio};
use crate::library;
use crate::model::{Content, Pattern, Recipe, StyleEntry, StyleMap};
use crate::source::{SourceId, SourceStore};
use crate::syntax::ast::*;
use crate::syntax::{Span, Spanned};
use crate::util::EcoString;
use crate::Context;
/// Evaluate a source file and return the resulting module.
///
/// Returns either a module containing a scope with top-level bindings and
/// layoutable contents or diagnostics in the form of a vector of error
/// messages with file and span information.
pub fn evaluate(
ctx: &mut Context,
id: SourceId,
mut route: Vec<SourceId>,
) -> TypResult<Module> {
// Prevent cyclic evaluation.
if route.contains(&id) {
let path = ctx.sources.get(id).path().display();
panic!("Tried to cyclicly evaluate {}", path);
}
// Check whether the module was already evaluated.
if let Some(module) = ctx.modules.get(&id) {
if module.valid(&ctx.sources) {
return Ok(module.clone());
} else {
ctx.modules.remove(&id);
}
}
route.push(id);
// Parse the file.
let source = ctx.sources.get(id);
let ast = source.ast()?;
let rev = source.rev();
// Evaluate the module.
let std = ctx.config.std.clone();
let scopes = Scopes::new(Some(&std));
let mut vm = Machine::new(ctx, route, scopes);
let result = ast.eval(&mut vm);
vm.deps.push((id, rev));
// Handle control flow.
if let Some(flow) = vm.flow {
return Err(flow.forbidden());
}
// Assemble the module.
let module = Module {
scope: vm.scopes.top,
content: result?,
deps: vm.deps,
};
// Save the evaluated module.
ctx.modules.insert(id, module.clone());
Ok(module)
}
/// An evaluated module, ready for importing or layouting.
#[derive(Debug, Clone)]
pub struct Module {
/// The top-level definitions that were bound in this module.
pub scope: Scope,
/// The module's layoutable contents.
pub content: Content,
/// The source file revisions this module depends on.
pub deps: Vec<(SourceId, usize)>,
}
impl Module {
/// Whether the module is still valid for the given sources.
pub fn valid(&self, sources: &SourceStore) -> bool {
self.deps.iter().all(|&(id, rev)| rev == sources.get(id).rev())
}
}
/// Evaluate an expression.
pub trait Eval {
/// The output of evaluating the expression.
type Output;
/// Evaluate the expression to the output value.
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output>;
}
impl Eval for Markup {
type Output = Content;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
eval_markup(vm, &mut self.nodes())
}
}
/// Evaluate a stream of markup nodes.
fn eval_markup(
vm: &mut Machine,
nodes: &mut impl Iterator<Item = MarkupNode>,
) -> TypResult<Content> {
let flow = vm.flow.take();
let mut seq = Vec::with_capacity(nodes.size_hint().1.unwrap_or_default());
while let Some(node) = nodes.next() {
seq.push(match node {
MarkupNode::Expr(Expr::Set(set)) => {
let styles = set.eval(vm)?;
if vm.flow.is_some() {
break;
}
eval_markup(vm, nodes)?.styled_with_map(styles)
}
MarkupNode::Expr(Expr::Show(show)) => {
let recipe = show.eval(vm)?;
if vm.flow.is_some() {
break;
}
eval_markup(vm, nodes)?
.styled_with_entry(StyleEntry::Recipe(recipe).into())
}
MarkupNode::Expr(Expr::Wrap(wrap)) => {
let tail = eval_markup(vm, nodes)?;
vm.scopes.top.define(wrap.binding().take(), tail);
wrap.body().eval(vm)?.display()
}
_ => node.eval(vm)?,
});
if vm.flow.is_some() {
break;
}
}
if flow.is_some() {
vm.flow = flow;
}
Ok(Content::sequence(seq))
}
impl Eval for MarkupNode {
type Output = Content;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
Ok(match self {
Self::Space => Content::Space,
Self::Parbreak => Content::Parbreak,
&Self::Linebreak { justified } => Content::Linebreak { justified },
Self::Text(text) => Content::Text(text.clone()),
&Self::Quote { double } => Content::Quote { double },
Self::Strong(strong) => strong.eval(vm)?,
Self::Emph(emph) => emph.eval(vm)?,
Self::Raw(raw) => raw.eval(vm)?,
Self::Math(math) => math.eval(vm)?,
Self::Heading(heading) => heading.eval(vm)?,
Self::List(list) => list.eval(vm)?,
Self::Enum(enum_) => enum_.eval(vm)?,
Self::Expr(expr) => expr.eval(vm)?.display(),
})
}
}
impl Eval for StrongNode {
type Output = Content;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
Ok(Content::show(library::text::StrongNode(
self.body().eval(vm)?,
)))
}
}
impl Eval for EmphNode {
type Output = Content;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
Ok(Content::show(library::text::EmphNode(
self.body().eval(vm)?,
)))
}
}
impl Eval for RawNode {
type Output = Content;
fn eval(&self, _: &mut Machine) -> TypResult<Self::Output> {
let content = Content::show(library::text::RawNode {
text: self.text.clone(),
block: self.block,
});
Ok(match self.lang {
Some(_) => content.styled(library::text::RawNode::LANG, self.lang.clone()),
None => content,
})
}
}
impl Eval for Spanned<MathNode> {
type Output = Content;
fn eval(&self, _: &mut Machine) -> TypResult<Self::Output> {
Ok(Content::show(library::math::MathNode {
formula: self.clone().map(|math| math.formula),
display: self.v.display,
}))
}
}
impl Eval for HeadingNode {
type Output = Content;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
Ok(Content::show(library::structure::HeadingNode {
body: self.body().eval(vm)?,
level: self.level(),
}))
}
}
impl Eval for ListNode {
type Output = Content;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
Ok(Content::Item(library::structure::ListItem {
kind: library::structure::UNORDERED,
number: None,
body: Box::new(self.body().eval(vm)?),
}))
}
}
impl Eval for EnumNode {
type Output = Content;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
Ok(Content::Item(library::structure::ListItem {
kind: library::structure::ORDERED,
number: self.number(),
body: Box::new(self.body().eval(vm)?),
}))
}
}
impl Eval for Expr {
type Output = Value;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
let forbidden = |name| {
error!(
self.span(),
"{} is only allowed directly in code and content blocks", name
)
};
match self {
Self::Lit(v) => v.eval(vm),
Self::Ident(v) => v.eval(vm),
Self::Code(v) => v.eval(vm),
Self::Content(v) => v.eval(vm).map(Value::Content),
Self::Array(v) => v.eval(vm).map(Value::Array),
Self::Dict(v) => v.eval(vm).map(Value::Dict),
Self::Group(v) => v.eval(vm),
Self::FieldAccess(v) => v.eval(vm),
Self::FuncCall(v) => v.eval(vm),
Self::MethodCall(v) => v.eval(vm),
Self::Closure(v) => v.eval(vm),
Self::Unary(v) => v.eval(vm),
Self::Binary(v) => v.eval(vm),
Self::Let(v) => v.eval(vm),
Self::Set(_) => Err(forbidden("set")),
Self::Show(_) => Err(forbidden("show")),
Self::Wrap(_) => Err(forbidden("wrap")),
Self::If(v) => v.eval(vm),
Self::While(v) => v.eval(vm),
Self::For(v) => v.eval(vm),
Self::Import(v) => v.eval(vm),
Self::Include(v) => v.eval(vm).map(Value::Content),
Self::Break(v) => v.eval(vm),
Self::Continue(v) => v.eval(vm),
Self::Return(v) => v.eval(vm),
}
}
}
impl Eval for Lit {
type Output = Value;
fn eval(&self, _: &mut Machine) -> TypResult<Self::Output> {
Ok(match self.kind() {
LitKind::None => Value::None,
LitKind::Auto => Value::Auto,
LitKind::Bool(v) => Value::Bool(v),
LitKind::Int(v) => Value::Int(v),
LitKind::Float(v) => Value::Float(v),
LitKind::Numeric(v, unit) => match unit {
Unit::Length(unit) => Length::with_unit(v, unit).into(),
Unit::Angle(unit) => Angle::with_unit(v, unit).into(),
Unit::Em => Em::new(v).into(),
Unit::Fr => Fraction::new(v).into(),
Unit::Percent => Ratio::new(v / 100.0).into(),
},
LitKind::Str(ref v) => Value::Str(v.clone()),
})
}
}
impl Eval for Ident {
type Output = Value;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
vm.scopes.get(self).cloned().at(self.span())
}
}
impl Eval for CodeBlock {
type Output = Value;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
vm.scopes.enter();
let output = eval_code(vm, &mut self.exprs())?;
vm.scopes.exit();
Ok(output)
}
}
/// Evaluate a stream of expressions.
fn eval_code(
vm: &mut Machine,
exprs: &mut impl Iterator<Item = Expr>,
) -> TypResult<Value> {
let flow = vm.flow.take();
let mut output = Value::None;
while let Some(expr) = exprs.next() {
let span = expr.span();
let value = match expr {
Expr::Set(set) => {
let styles = set.eval(vm)?;
if vm.flow.is_some() {
break;
}
let tail = eval_code(vm, exprs)?.display();
Value::Content(tail.styled_with_map(styles))
}
Expr::Show(show) => {
let recipe = show.eval(vm)?;
let entry = StyleEntry::Recipe(recipe).into();
if vm.flow.is_some() {
break;
}
let tail = eval_code(vm, exprs)?.display();
Value::Content(tail.styled_with_entry(entry))
}
Expr::Wrap(wrap) => {
let tail = eval_code(vm, exprs)?;
vm.scopes.top.define(wrap.binding().take(), tail);
wrap.body().eval(vm)?
}
_ => expr.eval(vm)?,
};
output = ops::join(output, value).at(span)?;
if vm.flow.is_some() {
break;
}
}
if flow.is_some() {
vm.flow = flow;
}
Ok(output)
}
impl Eval for ContentBlock {
type Output = Content;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
vm.scopes.enter();
let content = self.body().eval(vm)?;
vm.scopes.exit();
Ok(content)
}
}
impl Eval for GroupExpr {
type Output = Value;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
self.expr().eval(vm)
}
}
impl Eval for ArrayExpr {
type Output = Array;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
let items = self.items();
let mut vec = Vec::with_capacity(items.size_hint().0);
for item in items {
match item {
ArrayItem::Pos(expr) => vec.push(expr.eval(vm)?),
ArrayItem::Spread(expr) => match expr.eval(vm)? {
Value::None => {}
Value::Array(array) => vec.extend(array.into_iter()),
v => bail!(expr.span(), "cannot spread {} into array", v.type_name()),
},
}
}
Ok(Array::from_vec(vec))
}
}
impl Eval for DictExpr {
type Output = Dict;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
let mut map = BTreeMap::new();
for item in self.items() {
match item {
DictItem::Named(named) => {
map.insert(named.name().take(), named.expr().eval(vm)?);
}
DictItem::Keyed(keyed) => {
map.insert(keyed.key(), keyed.expr().eval(vm)?);
}
DictItem::Spread(expr) => match expr.eval(vm)? {
Value::None => {}
Value::Dict(dict) => map.extend(dict.into_iter()),
v => bail!(
expr.span(),
"cannot spread {} into dictionary",
v.type_name()
),
},
}
}
Ok(Dict::from_map(map))
}
}
impl Eval for UnaryExpr {
type Output = Value;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
let value = self.expr().eval(vm)?;
let result = match self.op() {
UnOp::Pos => ops::pos(value),
UnOp::Neg => ops::neg(value),
UnOp::Not => ops::not(value),
};
Ok(result.at(self.span())?)
}
}
impl Eval for BinaryExpr {
type Output = Value;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
match self.op() {
BinOp::Add => self.apply(vm, ops::add),
BinOp::Sub => self.apply(vm, ops::sub),
BinOp::Mul => self.apply(vm, ops::mul),
BinOp::Div => self.apply(vm, ops::div),
BinOp::And => self.apply(vm, ops::and),
BinOp::Or => self.apply(vm, ops::or),
BinOp::Eq => self.apply(vm, ops::eq),
BinOp::Neq => self.apply(vm, ops::neq),
BinOp::Lt => self.apply(vm, ops::lt),
BinOp::Leq => self.apply(vm, ops::leq),
BinOp::Gt => self.apply(vm, ops::gt),
BinOp::Geq => self.apply(vm, ops::geq),
BinOp::In => self.apply(vm, ops::in_),
BinOp::NotIn => self.apply(vm, ops::not_in),
BinOp::Assign => self.assign(vm, |_, b| Ok(b)),
BinOp::AddAssign => self.assign(vm, ops::add),
BinOp::SubAssign => self.assign(vm, ops::sub),
BinOp::MulAssign => self.assign(vm, ops::mul),
BinOp::DivAssign => self.assign(vm, ops::div),
}
}
}
impl BinaryExpr {
/// Apply a basic binary operation.
fn apply(
&self,
vm: &mut Machine,
op: fn(Value, Value) -> StrResult<Value>,
) -> TypResult<Value> {
let lhs = self.lhs().eval(vm)?;
// Short-circuit boolean operations.
if (self.op() == BinOp::And && lhs == Value::Bool(false))
|| (self.op() == BinOp::Or && lhs == Value::Bool(true))
{
return Ok(lhs);
}
let rhs = self.rhs().eval(vm)?;
Ok(op(lhs, rhs).at(self.span())?)
}
/// Apply an assignment operation.
fn assign(
&self,
vm: &mut Machine,
op: fn(Value, Value) -> StrResult<Value>,
) -> TypResult<Value> {
let rhs = self.rhs().eval(vm)?;
let location = self.lhs().access(vm)?;
let lhs = std::mem::take(&mut *location);
*location = op(lhs, rhs).at(self.span())?;
Ok(Value::None)
}
}
impl Eval for FieldAccess {
type Output = Value;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
let object = self.object().eval(vm)?;
let span = self.field().span();
let field = self.field().take();
Ok(match object {
Value::Dict(dict) => dict.get(&field).at(span)?.clone(),
Value::Content(Content::Show(_, Some(dict))) => dict
.get(&field)
.map_err(|_| format!("unknown field {field:?}"))
.at(span)?
.clone(),
v => bail!(
self.object().span(),
"cannot access field on {}",
v.type_name()
),
})
}
}
impl Eval for FuncCall {
type Output = Value;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
let callee = self.callee().eval(vm)?;
let args = self.args().eval(vm)?;
Ok(match callee {
Value::Array(array) => array.get(args.into_index()?).at(self.span())?.clone(),
Value::Dict(dict) => dict.get(&args.into_key()?).at(self.span())?.clone(),
Value::Func(func) => {
let point = || Tracepoint::Call(func.name().map(ToString::to_string));
func.call(vm, args).trace(point, self.span())?
}
v => bail!(
self.callee().span(),
"expected callable or collection, found {}",
v.type_name(),
),
})
}
}
impl Eval for MethodCall {
type Output = Value;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
let span = self.span();
let method = self.method();
let point = || Tracepoint::Call(Some(method.to_string()));
Ok(if methods::is_mutating(&method) {
let args = self.args().eval(vm)?;
let mut value = self.receiver().access(vm)?;
methods::call_mut(&mut value, &method, args, span).trace(point, span)?;
Value::None
} else {
let value = self.receiver().eval(vm)?;
let args = self.args().eval(vm)?;
methods::call(vm, value, &method, args, span).trace(point, span)?
})
}
}
impl Eval for CallArgs {
type Output = Args;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
let mut items = Vec::new();
for arg in self.items() {
let span = arg.span();
match arg {
CallArg::Pos(expr) => {
items.push(Arg {
span,
name: None,
value: Spanned::new(expr.eval(vm)?, expr.span()),
});
}
CallArg::Named(named) => {
items.push(Arg {
span,
name: Some(named.name().take()),
value: Spanned::new(named.expr().eval(vm)?, named.expr().span()),
});
}
CallArg::Spread(expr) => match expr.eval(vm)? {
Value::None => {}
Value::Array(array) => {
items.extend(array.into_iter().map(|value| Arg {
span,
name: None,
value: Spanned::new(value, span),
}));
}
Value::Dict(dict) => {
items.extend(dict.into_iter().map(|(key, value)| Arg {
span,
name: Some(key),
value: Spanned::new(value, span),
}));
}
Value::Args(args) => items.extend(args.items),
v => bail!(expr.span(), "cannot spread {}", v.type_name()),
},
}
}
Ok(Args { span: self.span(), items })
}
}
impl Eval for ClosureExpr {
type Output = Value;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
// The closure's name is defined by its let binding if there's one.
let name = self.name().map(Ident::take);
// Collect captured variables.
let captured = {
let mut visitor = CapturesVisitor::new(&vm.scopes);
visitor.visit(self.as_red());
visitor.finish()
};
let mut params = Vec::new();
let mut sink = None;
// Collect parameters and an optional sink parameter.
for param in self.params() {
match param {
ClosureParam::Pos(name) => {
params.push((name.take(), None));
}
ClosureParam::Named(named) => {
params.push((named.name().take(), Some(named.expr().eval(vm)?)));
}
ClosureParam::Sink(name) => {
if sink.is_some() {
bail!(name.span(), "only one argument sink is allowed");
}
sink = Some(name.take());
}
}
}
// Define the actual function.
Ok(Value::Func(Func::from_closure(Closure {
location: vm.route.last().copied(),
name,
captured,
params,
sink,
body: self.body(),
})))
}
}
impl Eval for LetExpr {
type Output = Value;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
let value = match self.init() {
Some(expr) => expr.eval(vm)?,
None => Value::None,
};
vm.scopes.top.define(self.binding().take(), value);
Ok(Value::None)
}
}
impl Eval for SetExpr {
type Output = StyleMap;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
let target = self.target();
let target = target.eval(vm)?.cast::<Func>().at(target.span())?;
let args = self.args().eval(vm)?;
Ok(target.set(args)?)
}
}
impl Eval for ShowExpr {
type Output = Recipe;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
// Evaluate the target function.
let pattern = self.pattern();
let pattern = pattern.eval(vm)?.cast::<Pattern>().at(pattern.span())?;
// Collect captured variables.
let captured = {
let mut visitor = CapturesVisitor::new(&vm.scopes);
visitor.visit(self.as_red());
visitor.finish()
};
// Define parameters.
let mut params = vec![];
if let Some(binding) = self.binding() {
params.push((binding.take(), None));
}
// Define the recipe function.
let body = self.body();
let span = body.span();
let func = Func::from_closure(Closure {
location: vm.route.last().copied(),
name: None,
captured,
params,
sink: None,
body,
});
Ok(Recipe { pattern, func: Spanned::new(func, span) })
}
}
impl Eval for IfExpr {
type Output = Value;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
let condition = self.condition();
if condition.eval(vm)?.cast::<bool>().at(condition.span())? {
self.if_body().eval(vm)
} else if let Some(else_body) = self.else_body() {
else_body.eval(vm)
} else {
Ok(Value::None)
}
}
}
impl Eval for WhileExpr {
type Output = Value;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
let flow = vm.flow.take();
let mut output = Value::None;
let condition = self.condition();
while condition.eval(vm)?.cast::<bool>().at(condition.span())? {
let body = self.body();
let value = body.eval(vm)?;
output = ops::join(output, value).at(body.span())?;
match vm.flow {
Some(Flow::Break(_)) => {
vm.flow = None;
break;
}
Some(Flow::Continue(_)) => vm.flow = None,
Some(Flow::Return(..)) => break,
None => {}
}
}
if flow.is_some() {
vm.flow = flow;
}
Ok(output)
}
}
impl Eval for ForExpr {
type Output = Value;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
let flow = vm.flow.take();
let mut output = Value::None;
vm.scopes.enter();
macro_rules! iter {
(for ($($binding:ident => $value:ident),*) in $iter:expr) => {{
#[allow(unused_parens)]
for ($($value),*) in $iter {
$(vm.scopes.top.define(&$binding, $value);)*
let body = self.body();
let value = body.eval(vm)?;
output = ops::join(output, value).at(body.span())?;
match vm.flow {
Some(Flow::Break(_)) => {
vm.flow = None;
break;
}
Some(Flow::Continue(_)) => vm.flow = None,
Some(Flow::Return(..)) => break,
None => {}
}
}
}};
}
let iter = self.iter().eval(vm)?;
let pattern = self.pattern();
let key = pattern.key().map(Ident::take);
let value = pattern.value().take();
match (key, value, iter) {
(None, v, Value::Str(string)) => {
iter!(for (v => value) in string.graphemes(true));
}
(None, v, Value::Array(array)) => {
iter!(for (v => value) in array.into_iter());
}
(Some(i), v, Value::Array(array)) => {
iter!(for (i => idx, v => value) in array.into_iter().enumerate());
}
(None, v, Value::Dict(dict)) => {
iter!(for (v => value) in dict.into_iter().map(|p| p.1));
}
(Some(k), v, Value::Dict(dict)) => {
iter!(for (k => key, v => value) in dict.into_iter());
}
(None, v, Value::Args(args)) => {
iter!(for (v => value) in args.items.into_iter()
.filter(|arg| arg.name.is_none())
.map(|arg| arg.value.v));
}
(Some(k), v, Value::Args(args)) => {
iter!(for (k => key, v => value) in args.items.into_iter()
.map(|arg| (arg.name.map_or(Value::None, Value::Str), arg.value.v)));
}
(_, _, Value::Str(_)) => {
bail!(pattern.span(), "mismatched pattern");
}
(_, _, iter) => {
bail!(self.iter().span(), "cannot loop over {}", iter.type_name());
}
}
if flow.is_some() {
vm.flow = flow;
}
vm.scopes.exit();
Ok(output)
}
}
impl Eval for ImportExpr {
type Output = Value;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
let span = self.path().span();
let path = self.path().eval(vm)?.cast::<EcoString>().at(span)?;
let module = import(vm, &path, span)?;
match self.imports() {
Imports::Wildcard => {
for (var, value) in module.scope.iter() {
vm.scopes.top.define(var, value.clone());
}
}
Imports::Items(idents) => {
for ident in idents {
if let Some(value) = module.scope.get(&ident) {
vm.scopes.top.define(ident.take(), value.clone());
} else {
bail!(ident.span(), "unresolved import");
}
}
}
}
Ok(Value::None)
}
}
impl Eval for IncludeExpr {
type Output = Content;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
let span = self.path().span();
let path = self.path().eval(vm)?.cast::<EcoString>().at(span)?;
let module = import(vm, &path, span)?;
Ok(module.content.clone())
}
}
/// Process an import of a module relative to the current location.
fn import(vm: &mut Machine, path: &str, span: Span) -> TypResult<Module> {
// Load the source file.
let full = vm.locate(&path).at(span)?;
let id = vm.ctx.sources.load(&full).map_err(|err| match err.kind() {
std::io::ErrorKind::NotFound => {
error!(span, "file not found (searched at {})", full.display())
}
_ => error!(span, "failed to load source file ({})", err),
})?;
// Prevent cyclic importing.
if vm.route.contains(&id) {
bail!(span, "cyclic import");
}
// Evaluate the file.
let route = vm.route.clone();
let module = evaluate(vm.ctx, id, route).trace(|| Tracepoint::Import, span)?;
vm.deps.extend(module.deps.iter().cloned());
Ok(module)
}
impl Eval for BreakExpr {
type Output = Value;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
if vm.flow.is_none() {
vm.flow = Some(Flow::Break(self.span()));
}
Ok(Value::None)
}
}
impl Eval for ContinueExpr {
type Output = Value;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
if vm.flow.is_none() {
vm.flow = Some(Flow::Continue(self.span()));
}
Ok(Value::None)
}
}
impl Eval for ReturnExpr {
type Output = Value;
fn eval(&self, vm: &mut Machine) -> TypResult<Self::Output> {
let value = self.body().map(|body| body.eval(vm)).transpose()?;
if vm.flow.is_none() {
vm.flow = Some(Flow::Return(self.span(), value));
}
Ok(Value::None)
}
}
/// Access an expression mutably.
pub trait Access {
/// Access the value.
fn access<'a>(&self, vm: &'a mut Machine) -> TypResult<&'a mut Value>;
}
impl Access for Expr {
fn access<'a>(&self, vm: &'a mut Machine) -> TypResult<&'a mut Value> {
match self {
Expr::Ident(v) => v.access(vm),
Expr::FieldAccess(v) => v.access(vm),
Expr::FuncCall(v) => v.access(vm),
_ => bail!(self.span(), "cannot mutate a temporary value"),
}
}
}
impl Access for Ident {
fn access<'a>(&self, vm: &'a mut Machine) -> TypResult<&'a mut Value> {
vm.scopes.get_mut(self).at(self.span())
}
}
impl Access for FieldAccess {
fn access<'a>(&self, vm: &'a mut Machine) -> TypResult<&'a mut Value> {
Ok(match self.object().access(vm)? {
Value::Dict(dict) => dict.get_mut(self.field().take()),
v => bail!(
self.object().span(),
"expected dictionary, found {}",
v.type_name(),
),
})
}
}
impl Access for FuncCall {
fn access<'a>(&self, vm: &'a mut Machine) -> TypResult<&'a mut Value> {
let args = self.args().eval(vm)?;
Ok(match self.callee().access(vm)? {
Value::Array(array) => array.get_mut(args.into_index()?).at(self.span())?,
Value::Dict(dict) => dict.get_mut(args.into_key()?),
v => bail!(
self.callee().span(),
"expected collection, found {}",
v.type_name(),
),
})
}
}