lucaslugao 6dd05cc17a
Add explicit notice about unicode minus sign in the str function (#5301)
Co-authored-by: Laurenz <laurmaedje@gmail.com>
2024-10-28 14:26:32 +00:00

972 lines
28 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use std::borrow::{Borrow, Cow};
use std::fmt::{self, Debug, Display, Formatter};
use std::hash::{Hash, Hasher};
use std::ops::{Add, AddAssign, Deref, Range};
use comemo::Tracked;
use ecow::EcoString;
use serde::{Deserialize, Serialize};
use typst_syntax::{Span, Spanned};
use typst_utils::PicoStr;
use unicode_segmentation::UnicodeSegmentation;
use crate::diag::{bail, At, SourceResult, StrResult};
use crate::engine::Engine;
use crate::foundations::{
cast, dict, func, repr, scope, ty, Array, Bytes, Context, Decimal, Dict, Func,
IntoValue, Label, Repr, Type, Value, Version,
};
use crate::layout::Alignment;
/// Create a new [`Str`] from a format string.
#[macro_export]
#[doc(hidden)]
macro_rules! __format_str {
($($tts:tt)*) => {{
$crate::foundations::Str::from($crate::foundations::eco_format!($($tts)*))
}};
}
#[doc(hidden)]
pub use ecow::eco_format;
#[doc(inline)]
pub use crate::__format_str as format_str;
/// A sequence of Unicode codepoints.
///
/// You can iterate over the grapheme clusters of the string using a [for
/// loop]($scripting/#loops). Grapheme clusters are basically characters but
/// keep together things that belong together, e.g. multiple codepoints that
/// together form a flag emoji. Strings can be added with the `+` operator,
/// [joined together]($scripting/#blocks) and multiplied with integers.
///
/// Typst provides utility methods for string manipulation. Many of these
/// methods (e.g., `split`, `trim` and `replace`) operate on _patterns:_ A
/// pattern can be either a string or a [regular expression]($regex). This makes
/// the methods quite versatile.
///
/// All lengths and indices are expressed in terms of UTF-8 bytes. Indices are
/// zero-based and negative indices wrap around to the end of the string.
///
/// You can convert a value to a string with this type's constructor.
///
/// # Example
/// ```example
/// #"hello world!" \
/// #"\"hello\n world\"!" \
/// #"1 2 3".split() \
/// #"1,2;3".split(regex("[,;]")) \
/// #(regex("\d+") in "ten euros") \
/// #(regex("\d+") in "10 euros")
/// ```
///
/// # Escape sequences { #escapes }
/// Just like in markup, you can escape a few symbols in strings:
/// - `[\\]` for a backslash
/// - `[\"]` for a quote
/// - `[\n]` for a newline
/// - `[\r]` for a carriage return
/// - `[\t]` for a tab
/// - `[\u{1f600}]` for a hexadecimal Unicode escape sequence
#[ty(scope, cast, title = "String")]
#[derive(Default, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[derive(Serialize, Deserialize)]
#[serde(transparent)]
pub struct Str(EcoString);
impl Str {
/// Create a new, empty string.
pub fn new() -> Self {
Self(EcoString::new())
}
/// Return `true` if the length is 0.
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Repeat the string a number of times.
pub fn repeat(&self, n: usize) -> StrResult<Self> {
if self.0.len().checked_mul(n).is_none() {
return Err(eco_format!("cannot repeat this string {n} times"));
}
Ok(Self(self.0.repeat(n)))
}
/// A string slice containing the entire string.
pub fn as_str(&self) -> &str {
self
}
/// Resolve an index or throw an out of bounds error.
fn locate(&self, index: i64) -> StrResult<usize> {
self.locate_opt(index)?
.ok_or_else(|| out_of_bounds(index, self.len()))
}
/// Resolve an index, if it is within bounds and on a valid char boundary.
///
/// `index == len` is considered in bounds.
fn locate_opt(&self, index: i64) -> StrResult<Option<usize>> {
let wrapped =
if index >= 0 { Some(index) } else { (self.len() as i64).checked_add(index) };
let resolved = wrapped
.and_then(|v| usize::try_from(v).ok())
.filter(|&v| v <= self.0.len());
if resolved.is_some_and(|i| !self.0.is_char_boundary(i)) {
return Err(not_a_char_boundary(index));
}
Ok(resolved)
}
}
#[scope]
impl Str {
/// Converts a value to a string.
///
/// - Integers are formatted in base 10. This can be overridden with the
/// optional `base` parameter.
/// - Floats are formatted in base 10 and never in exponential notation.
/// - Negative integers and floats are formatted with the Unicode minus sign
/// ("" U+2212) instead of the ASCII minus sign ("-" U+002D).
/// - From labels the name is extracted.
/// - Bytes are decoded as UTF-8.
///
/// If you wish to convert from and to Unicode code points, see the
/// [`to-unicode`]($str.to-unicode) and [`from-unicode`]($str.from-unicode)
/// functions.
///
/// ```example
/// #str(10) \
/// #str(4000, base: 16) \
/// #str(2.7) \
/// #str(1e8) \
/// #str(<intro>)
/// ```
#[func(constructor)]
pub fn construct(
/// The value that should be converted to a string.
value: ToStr,
/// The base (radix) to display integers in, between 2 and 36.
#[named]
#[default(Spanned::new(10, Span::detached()))]
base: Spanned<i64>,
) -> SourceResult<Str> {
Ok(match value {
ToStr::Str(s) => {
if base.v != 10 {
bail!(base.span, "base is only supported for integers");
}
s
}
ToStr::Int(n) => {
if base.v < 2 || base.v > 36 {
bail!(base.span, "base must be between 2 and 36");
}
repr::format_int_with_base(n, base.v).into()
}
})
}
/// The length of the string in UTF-8 encoded bytes.
#[func(title = "Length")]
pub fn len(&self) -> usize {
self.0.len()
}
/// Extracts the first grapheme cluster of the string.
/// Fails with an error if the string is empty.
#[func]
pub fn first(&self) -> StrResult<Str> {
self.0
.graphemes(true)
.next()
.map(Into::into)
.ok_or_else(string_is_empty)
}
/// Extracts the last grapheme cluster of the string.
/// Fails with an error if the string is empty.
#[func]
pub fn last(&self) -> StrResult<Str> {
self.0
.graphemes(true)
.next_back()
.map(Into::into)
.ok_or_else(string_is_empty)
}
/// Extracts the first grapheme cluster after the specified index. Returns
/// the default value if the index is out of bounds or fails with an error
/// if no default value was specified.
#[func]
pub fn at(
&self,
/// The byte index. If negative, indexes from the back.
index: i64,
/// A default value to return if the index is out of bounds.
#[named]
default: Option<Value>,
) -> StrResult<Value> {
let len = self.len();
self.locate_opt(index)?
.and_then(|i| self.0[i..].graphemes(true).next().map(|s| s.into_value()))
.or(default)
.ok_or_else(|| no_default_and_out_of_bounds(index, len))
}
/// Extracts a substring of the string.
/// Fails with an error if the start or end index is out of bounds.
#[func]
pub fn slice(
&self,
/// The start byte index (inclusive). If negative, indexes from the
/// back.
start: i64,
/// The end byte index (exclusive). If omitted, the whole slice until
/// the end of the string is extracted. If negative, indexes from the
/// back.
#[default]
end: Option<i64>,
/// The number of bytes to extract. This is equivalent to passing
/// `start + count` as the `end` position. Mutually exclusive with `end`.
#[named]
count: Option<i64>,
) -> StrResult<Str> {
let end = end.or(count.map(|c| start + c)).unwrap_or(self.len() as i64);
let start = self.locate(start)?;
let end = self.locate(end)?.max(start);
Ok(self.0[start..end].into())
}
/// Returns the grapheme clusters of the string as an array of substrings.
#[func]
pub fn clusters(&self) -> Array {
self.as_str().graphemes(true).map(|s| Value::Str(s.into())).collect()
}
/// Returns the Unicode codepoints of the string as an array of substrings.
#[func]
pub fn codepoints(&self) -> Array {
self.chars().map(|c| Value::Str(c.into())).collect()
}
/// Converts a character into its corresponding code point.
///
/// ```example
/// #"a".to-unicode() \
/// #("a\u{0300}"
/// .codepoints()
/// .map(str.to-unicode))
/// ```
#[func]
pub fn to_unicode(
/// The character that should be converted.
character: char,
) -> u32 {
character as u32
}
/// Converts a unicode code point into its corresponding string.
///
/// ```example
/// #str.from-unicode(97)
/// ```
#[func]
pub fn from_unicode(
/// The code point that should be converted.
value: u32,
) -> StrResult<Str> {
let c: char = value
.try_into()
.map_err(|_| eco_format!("{value:#x} is not a valid codepoint"))?;
Ok(c.into())
}
/// Whether the string contains the specified pattern.
///
/// This method also has dedicated syntax: You can write `{"bc" in "abcd"}`
/// instead of `{"abcd".contains("bc")}`.
#[func]
pub fn contains(
&self,
/// The pattern to search for.
pattern: StrPattern,
) -> bool {
match pattern {
StrPattern::Str(pat) => self.0.contains(pat.as_str()),
StrPattern::Regex(re) => re.is_match(self),
}
}
/// Whether the string starts with the specified pattern.
#[func]
pub fn starts_with(
&self,
/// The pattern the string might start with.
pattern: StrPattern,
) -> bool {
match pattern {
StrPattern::Str(pat) => self.0.starts_with(pat.as_str()),
StrPattern::Regex(re) => re.find(self).is_some_and(|m| m.start() == 0),
}
}
/// Whether the string ends with the specified pattern.
#[func]
pub fn ends_with(
&self,
/// The pattern the string might end with.
pattern: StrPattern,
) -> bool {
match pattern {
StrPattern::Str(pat) => self.0.ends_with(pat.as_str()),
StrPattern::Regex(re) => {
let mut start_byte = 0;
while let Some(mat) = re.find_at(self, start_byte) {
if mat.end() == self.0.len() {
return true;
}
// There might still be a match overlapping this one, so
// restart at the next code point.
let Some(c) = self[mat.start()..].chars().next() else { break };
start_byte = mat.start() + c.len_utf8();
}
false
}
}
}
/// Searches for the specified pattern in the string and returns the first
/// match as a string or `{none}` if there is no match.
#[func]
pub fn find(
&self,
/// The pattern to search for.
pattern: StrPattern,
) -> Option<Str> {
match pattern {
StrPattern::Str(pat) => self.0.contains(pat.as_str()).then_some(pat),
StrPattern::Regex(re) => re.find(self).map(|m| m.as_str().into()),
}
}
/// Searches for the specified pattern in the string and returns the index
/// of the first match as an integer or `{none}` if there is no match.
#[func]
pub fn position(
&self,
/// The pattern to search for.
pattern: StrPattern,
) -> Option<usize> {
match pattern {
StrPattern::Str(pat) => self.0.find(pat.as_str()),
StrPattern::Regex(re) => re.find(self).map(|m| m.start()),
}
}
/// Searches for the specified pattern in the string and returns a
/// dictionary with details about the first match or `{none}` if there is no
/// match.
///
/// The returned dictionary has the following keys:
/// - `start`: The start offset of the match
/// - `end`: The end offset of the match
/// - `text`: The text that matched.
/// - `captures`: An array containing a string for each matched capturing
/// group. The first item of the array contains the first matched
/// capturing, not the whole match! This is empty unless the `pattern` was
/// a regex with capturing groups.
#[func]
pub fn match_(
&self,
/// The pattern to search for.
pattern: StrPattern,
) -> Option<Dict> {
match pattern {
StrPattern::Str(pat) => {
self.0.match_indices(pat.as_str()).next().map(match_to_dict)
}
StrPattern::Regex(re) => re.captures(self).map(captures_to_dict),
}
}
/// Searches for the specified pattern in the string and returns an array of
/// dictionaries with details about all matches. For details about the
/// returned dictionaries, see above.
#[func]
pub fn matches(
&self,
/// The pattern to search for.
pattern: StrPattern,
) -> Array {
match pattern {
StrPattern::Str(pat) => self
.0
.match_indices(pat.as_str())
.map(match_to_dict)
.map(Value::Dict)
.collect(),
StrPattern::Regex(re) => re
.captures_iter(self)
.map(captures_to_dict)
.map(Value::Dict)
.collect(),
}
}
/// Replace at most `count` occurrences of the given pattern with a
/// replacement string or function (beginning from the start). If no count
/// is given, all occurrences are replaced.
#[func]
pub fn replace(
&self,
/// The engine.
engine: &mut Engine,
/// The callsite context.
context: Tracked<Context>,
/// The pattern to search for.
pattern: StrPattern,
/// The string to replace the matches with or a function that gets a
/// dictionary for each match and can return individual replacement
/// strings.
replacement: Replacement,
/// If given, only the first `count` matches of the pattern are placed.
#[named]
count: Option<usize>,
) -> SourceResult<Str> {
// Heuristic: Assume the new string is about the same length as
// the current string.
let mut output = EcoString::with_capacity(self.as_str().len());
// Replace one match of a pattern with the replacement.
let mut last_match = 0;
let mut handle_match = |range: Range<usize>, dict: Dict| -> SourceResult<()> {
// Push everything until the match.
output.push_str(&self[last_match..range.start]);
last_match = range.end;
// Determine and push the replacement.
match &replacement {
Replacement::Str(s) => output.push_str(s),
Replacement::Func(func) => {
let piece = func
.call(engine, context, [dict])?
.cast::<Str>()
.at(func.span())?;
output.push_str(&piece);
}
}
Ok(())
};
// Iterate over the matches of the `pattern`.
let count = count.unwrap_or(usize::MAX);
match &pattern {
StrPattern::Str(pat) => {
for m in self.match_indices(pat.as_str()).take(count) {
let (start, text) = m;
handle_match(start..start + text.len(), match_to_dict(m))?;
}
}
StrPattern::Regex(re) => {
for caps in re.captures_iter(self).take(count) {
// Extract the entire match over all capture groups.
let m = caps.get(0).unwrap();
handle_match(m.start()..m.end(), captures_to_dict(caps))?;
}
}
}
// Push the remainder.
output.push_str(&self[last_match..]);
Ok(output.into())
}
/// Removes matches of a pattern from one or both sides of the string, once or
/// repeatedly and returns the resulting string.
#[func]
pub fn trim(
&self,
/// The pattern to search for. If `{none}`, trims white spaces.
#[default]
pattern: Option<StrPattern>,
/// Can be `{start}` or `{end}` to only trim the start or end of the
/// string. If omitted, both sides are trimmed.
#[named]
at: Option<StrSide>,
/// Whether to repeatedly removes matches of the pattern or just once.
/// Defaults to `{true}`.
#[named]
#[default(true)]
repeat: bool,
) -> Str {
let mut start = matches!(at, Some(StrSide::Start) | None);
let end = matches!(at, Some(StrSide::End) | None);
let trimmed = match pattern {
None => match at {
None => self.0.trim(),
Some(StrSide::Start) => self.0.trim_start(),
Some(StrSide::End) => self.0.trim_end(),
},
Some(StrPattern::Str(pat)) => {
let pat = pat.as_str();
let mut s = self.as_str();
if repeat {
if start {
s = s.trim_start_matches(pat);
}
if end {
s = s.trim_end_matches(pat);
}
} else {
if start {
s = s.strip_prefix(pat).unwrap_or(s);
}
if end {
s = s.strip_suffix(pat).unwrap_or(s);
}
}
s
}
Some(StrPattern::Regex(re)) => {
let s = self.as_str();
let mut last = None;
let mut range = 0..s.len();
for m in re.find_iter(s) {
// Does this match follow directly after the last one?
let consecutive = last == Some(m.start());
// As long as we're at the beginning or in a consecutive run
// of matches, and we're still trimming at the start, trim.
start &= m.start() == 0 || consecutive;
if start {
range.start = m.end();
start &= repeat;
}
// Reset end trim if we aren't consecutive anymore or aren't
// repeating.
if end && (!consecutive || !repeat) {
range.end = m.start();
}
last = Some(m.end());
}
// Is the last match directly at the end?
if last.is_some_and(|last| last < s.len()) {
range.end = s.len();
}
&s[range.start..range.start.max(range.end)]
}
};
trimmed.into()
}
/// Splits a string at matches of a specified pattern and returns an array
/// of the resulting parts.
#[func]
pub fn split(
&self,
/// The pattern to split at. Defaults to whitespace.
#[default]
pattern: Option<StrPattern>,
) -> Array {
let s = self.as_str();
match pattern {
None => s.split_whitespace().map(|v| Value::Str(v.into())).collect(),
Some(StrPattern::Str(pat)) => {
s.split(pat.as_str()).map(|v| Value::Str(v.into())).collect()
}
Some(StrPattern::Regex(re)) => {
re.split(s).map(|v| Value::Str(v.into())).collect()
}
}
}
/// Reverse the string.
#[func(title = "Reverse")]
pub fn rev(&self) -> Str {
let mut s = EcoString::with_capacity(self.0.len());
for grapheme in self.as_str().graphemes(true).rev() {
s.push_str(grapheme);
}
s.into()
}
}
impl Deref for Str {
type Target = str;
fn deref(&self) -> &str {
&self.0
}
}
impl Debug for Str {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
Debug::fmt(self.as_str(), f)
}
}
impl Display for Str {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
Display::fmt(self.as_str(), f)
}
}
impl Repr for Str {
fn repr(&self) -> EcoString {
self.as_ref().repr()
}
}
impl Repr for EcoString {
fn repr(&self) -> EcoString {
self.as_ref().repr()
}
}
impl Repr for str {
fn repr(&self) -> EcoString {
let mut r = EcoString::with_capacity(self.len() + 2);
r.push('"');
for c in self.chars() {
match c {
'\0' => r.push_str(r"\u{0}"),
'\'' => r.push('\''),
'"' => r.push_str(r#"\""#),
_ => c.escape_debug().for_each(|c| r.push(c)),
}
}
r.push('"');
r
}
}
impl Add for Str {
type Output = Self;
fn add(mut self, rhs: Self) -> Self::Output {
self += rhs;
self
}
}
impl AddAssign for Str {
fn add_assign(&mut self, rhs: Self) {
self.0.push_str(rhs.as_str());
}
}
impl AsRef<str> for Str {
fn as_ref(&self) -> &str {
self
}
}
impl Borrow<str> for Str {
fn borrow(&self) -> &str {
self
}
}
impl From<char> for Str {
fn from(c: char) -> Self {
Self(c.into())
}
}
impl From<&str> for Str {
fn from(s: &str) -> Self {
Self(s.into())
}
}
impl From<EcoString> for Str {
fn from(s: EcoString) -> Self {
Self(s)
}
}
impl From<String> for Str {
fn from(s: String) -> Self {
Self(s.into())
}
}
impl From<Cow<'_, str>> for Str {
fn from(s: Cow<str>) -> Self {
Self(s.into())
}
}
impl FromIterator<char> for Str {
fn from_iter<T: IntoIterator<Item = char>>(iter: T) -> Self {
Self(iter.into_iter().collect())
}
}
impl From<Str> for EcoString {
fn from(str: Str) -> Self {
str.0
}
}
impl From<Str> for String {
fn from(s: Str) -> Self {
s.0.into()
}
}
cast! {
char,
self => Value::Str(self.into()),
string: Str => {
let mut chars = string.chars();
match (chars.next(), chars.next()) {
(Some(c), None) => c,
_ => bail!("expected exactly one character"),
}
},
}
cast! {
&str,
self => Value::Str(self.into()),
}
cast! {
EcoString,
self => Value::Str(self.into()),
v: Str => v.into(),
}
cast! {
PicoStr,
self => Value::Str(self.resolve().into()),
v: Str => v.as_str().into(),
}
cast! {
String,
self => Value::Str(self.into()),
v: Str => v.into(),
}
/// A value that can be cast to a string.
pub enum ToStr {
/// A string value ready to be used as-is.
Str(Str),
/// An integer about to be formatted in a given base.
Int(i64),
}
cast! {
ToStr,
v: i64 => Self::Int(v),
v: f64 => Self::Str(repr::display_float(v).into()),
v: Decimal => Self::Str(format_str!("{}", v)),
v: Version => Self::Str(format_str!("{}", v)),
v: Bytes => Self::Str(
std::str::from_utf8(&v)
.map_err(|_| "bytes are not valid utf-8")?
.into()
),
v: Label => Self::Str(v.as_str().into()),
v: Type => Self::Str(v.long_name().into()),
v: Str => Self::Str(v),
}
/// Convert an item of std's `match_indices` to a dictionary.
fn match_to_dict((start, text): (usize, &str)) -> Dict {
dict! {
"start" => start,
"end" => start + text.len(),
"text" => text,
"captures" => Array::new(),
}
}
/// Convert regex captures to a dictionary.
fn captures_to_dict(cap: regex::Captures) -> Dict {
let m = cap.get(0).expect("missing first match");
dict! {
"start" => m.start(),
"end" => m.end(),
"text" => m.as_str(),
"captures" => cap.iter()
.skip(1)
.map(|opt| opt.map_or(Value::None, |m| m.as_str().into_value()))
.collect::<Array>(),
}
}
/// The out of bounds access error message.
#[cold]
fn out_of_bounds(index: i64, len: usize) -> EcoString {
eco_format!("string index out of bounds (index: {}, len: {})", index, len)
}
/// The out of bounds access error message when no default value was given.
#[cold]
fn no_default_and_out_of_bounds(index: i64, len: usize) -> EcoString {
eco_format!("no default value was specified and string index out of bounds (index: {}, len: {})", index, len)
}
/// The char boundary access error message.
#[cold]
fn not_a_char_boundary(index: i64) -> EcoString {
eco_format!("string index {} is not a character boundary", index)
}
/// The error message when the string is empty.
#[cold]
fn string_is_empty() -> EcoString {
"string is empty".into()
}
/// A regular expression.
///
/// Can be used as a [show rule selector]($styling/#show-rules) and with
/// [string methods]($str) like `find`, `split`, and `replace`.
///
/// [See here](https://docs.rs/regex/latest/regex/#syntax) for a specification
/// of the supported syntax.
///
/// # Example
/// ```example
/// // Works with string methods.
/// #"a,b;c".split(regex("[,;]"))
///
/// // Works with show rules.
/// #show regex("\d+"): set text(red)
///
/// The numbers 1 to 10.
/// ```
#[ty(scope)]
#[derive(Debug, Clone)]
pub struct Regex(regex::Regex);
impl Regex {
/// Create a new regular expression.
pub fn new(re: &str) -> StrResult<Self> {
regex::Regex::new(re).map(Self).map_err(|err| eco_format!("{err}"))
}
}
#[scope]
impl Regex {
/// Create a regular expression from a string.
#[func(constructor)]
pub fn construct(
/// The regular expression as a string.
///
/// Most regex escape sequences just work because they are not valid Typst
/// escape sequences. To produce regex escape sequences that are also valid in
/// Typst (e.g. `[\\]`), you need to escape twice. Thus, to match a verbatim
/// backslash, you would need to write `{regex("\\\\")}`.
///
/// If you need many escape sequences, you can also create a raw element
/// and extract its text to use it for your regular expressions:
/// ```{regex(`\d+\.\d+\.\d+`.text)}```.
regex: Spanned<Str>,
) -> SourceResult<Regex> {
Self::new(&regex.v).at(regex.span)
}
}
impl Deref for Regex {
type Target = regex::Regex;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl Repr for Regex {
fn repr(&self) -> EcoString {
eco_format!("regex({})", self.0.as_str().repr())
}
}
impl PartialEq for Regex {
fn eq(&self, other: &Self) -> bool {
self.0.as_str() == other.0.as_str()
}
}
impl Hash for Regex {
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.as_str().hash(state);
}
}
/// A pattern which can be searched for in a string.
#[derive(Debug, Clone)]
pub enum StrPattern {
/// Just a string.
Str(Str),
/// A regular expression.
Regex(Regex),
}
cast! {
StrPattern,
self => match self {
Self::Str(v) => v.into_value(),
Self::Regex(v) => v.into_value(),
},
v: Str => Self::Str(v),
v: Regex => Self::Regex(v),
}
/// A side of a string.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
pub enum StrSide {
/// The logical start of the string, may be left or right depending on the
/// language.
Start,
/// The logical end of the string.
End,
}
cast! {
StrSide,
v: Alignment => match v {
Alignment::START => Self::Start,
Alignment::END => Self::End,
_ => bail!("expected either `start` or `end`"),
},
}
/// A replacement for a matched [`Str`]
pub enum Replacement {
/// A string a match is replaced with.
Str(Str),
/// Function of type Dict -> Str (see `captures_to_dict` or `match_to_dict`)
/// whose output is inserted for the match.
Func(Func),
}
cast! {
Replacement,
self => match self {
Self::Str(v) => v.into_value(),
Self::Func(v) => v.into_value(),
},
v: Str => Self::Str(v),
v: Func => Self::Func(v)
}