typst/tests/suite/math/attach.typ

192 lines
6.4 KiB
Typst
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Test t and b attachments, part 1.
--- math-attach-postscripts ---
// Test basics, postscripts.
$f_x + t^b + V_1^2 + attach(A, t: alpha, b: beta)$
--- math-attach-prescripts ---
// Test basics, prescripts. Notably, the upper and lower prescripts' content need to be
// aligned on the right edge of their bounding boxes, not on the left as in postscripts.
$
attach(upright(O), bl: 8, tl: 16, br: 2, tr: 2-),
attach("Pb", bl: 82, tl: 207) + attach(upright(e), bl: -1, tl: 0) + macron(v)_e \
$
--- math-attach-mixed ---
// A mixture of attachment positioning schemes.
$
attach(a, tl: u), attach(a, tr: v), attach(a, bl: x),
attach(a, br: y), limits(a)^t, limits(a)_b \
attach(a, tr: v, t: t),
attach(a, tr: v, br: y),
attach(a, br: y, b: b),
attach(limits(a), b: b, bl: x),
attach(a, tl: u, bl: x),
attach(limits(a), t: t, tl: u) \
attach(a, tl: u, tr: v),
attach(limits(a), t: t, br: y),
attach(limits(a), b: b, tr: v),
attach(a, bl: x, br: y),
attach(limits(a), b: b, tl: u),
attach(limits(a), t: t, bl: u),
limits(a)^t_b \
attach(a, tl: u, tr: v, bl: x, br: y),
attach(limits(a), t: t, bl: x, br: y, b: b),
attach(limits(a), t: t, tl: u, tr: v, b: b),
attach(limits(a), tl: u, bl: x, t: t, b: b),
attach(limits(a), t: t, b: b, tr: v, br: y),
attach(a, tl: u, t: t, tr: v, bl: x, b: b, br: y)
$
--- math-attach-followed-by-func-call ---
// Test function call after subscript.
$pi_1(Y), a_f(x), a^zeta (x), a^abs(b)_sqrt(c) \
a^subset.eq (x), a_(zeta(x)), pi_(1(Y)), a^(abs(b))_(sqrt(c))$
--- math-attach-nested ---
// Test associativity and scaling.
$ 1/(V^2^3^4^5),
frac(
attach(
limits(V), br: attach(2, br: 3), b: attach(limits(2), b: 3)),
attach(
limits(V), tl: attach(2, tl: 3), t: attach(limits(2), t: 3))),
attach(Omega,
tl: attach(2, tl: attach(3, tl: attach(4, tl: 5))),
tr: attach(2, tr: attach(3, tr: attach(4, tr: 5))),
bl: attach(2, bl: attach(3, bl: attach(4, bl: 5))),
br: attach(2, br: attach(3, br: attach(4, br: 5))),
)
$
--- math-attach-high ---
// Test high subscript and superscript.
$ sqrt(a_(1/2)^zeta), sqrt(a_alpha^(1/2)), sqrt(a_(1/2)^(3/4)) \
sqrt(attach(a, tl: 1/2, bl: 3/4)),
sqrt(attach(a, tl: 1/2, bl: 3/4, tr: 1/2, br: 3/4)) $
--- math-attach-descender-collision ---
// Test for no collisions between descenders/ascenders and attachments.
$ sup_(x in P_i) quad inf_(x in P_i) $
$ op("fff",limits: #true)^(y) quad op("yyy", limits:#true)_(f) $
--- math-attach-to-group ---
// Test frame base.
$ (-1)^n + (1/2 + 3)^(-1/2) $
--- math-attach-horizontal-align ---
#set text(size: 8pt)
// Test that the attachments are aligned horizontally.
$ x_1 p_1 frak(p)_1 2_1 dot_1 lg_1 !_1 \\_1 ]_1 "ip"_1 op("iq")_1 \
x^1 b^1 frak(b)^1 2^1 dot^1 lg^1 !^1 \\^1 ]^1 "ib"^1 op("id")^1 \
"_"_1 "`"^1 x_1 y_1 x^1 l^1 attach(I,tl:1,bl:1,tr:1,br:1)
scripts(sum)_1^1 integral_1^1 abs(1/2)_1^1 \
x^1_1, ")"^1_1 (b y)^1_1, "[∫]"_1 [integral]_1 $
--- math-attach-limit ---
// Test limit.
$ lim_(n->oo \ n "grows") sum_(k=0 \ k in NN)^n k $
--- math-attach-force-scripts-and-limits ---
// Test forcing scripts and limits.
$ limits(A)_1^2 != A_1^2 $
$ scripts(sum)_1^2 != sum_1^2 $
$ limits(integral)_a^b != integral_a^b $
--- issue-math-attach-realize-panic ---
// Error: 25-29 unknown variable: oops
$ attach(A, t: #context oops) $
--- math-attach-show-limit ---
// Show and let rules for limits and scripts
#let eq = $ _a^b iota_a^b $
#eq
#show "∫": math.limits
#show math.iota: math.limits.with(inline: false)
#eq
$iota_a^b$
--- math-attach-default-placement ---
// Test default of limit attachments on relations at all sizes.
#set page(width: auto)
$ a =^"def" b quad a lt.eq_"really" b quad a arrow.r.long.squiggly^"slowly" b $
$a =^"def" b quad a lt.eq_"really" b quad a arrow.r.long.squiggly^"slowly" b$
$a scripts(=)^"def" b quad a scripts(lt.eq)_"really" b quad a scripts(arrow.r.long.squiggly)^"slowly" b$
--- math-attach-integral ---
// Test default of scripts attachments on integrals at display size.
$ integral.sect_a^b quad \u{2a1b}_a^b quad limits(\u{2a1b})_a^b $
$integral.sect_a^b quad \u{2a1b}_a^b quad limits(\u{2a1b})_a^b$
--- math-attach-large-operator ---
// Test default of limit attachments on large operators at display size only.
$ tack.t.big_0^1 quad \u{02A0A}_0^1 quad join_0^1 $
$tack.t.big_0^1 quad \u{02A0A}_0^1 quad join_0^1$
--- math-attach-limit-long ---
// Test long limit attachments.
$ attach(product, t: 123456789) attach(product, t: 123456789, bl: x) \
attach(product, b: 123456789) attach(product, b: 123456789, tr: x) $
$attach(limits(product), t: 123456789) attach(limits(product), t: 123456789, bl: x)$
$attach(limits(product), b: 123456789) attach(limits(product), b: 123456789, tr: x)$
--- math-attach-kerning ---
// Test math kerning.
#show math.equation: set text(font: "STIX Two Math")
$ L^A Y^c R^2 delta^y omega^f a^2 t^w gamma^V p^+ \
b_lambda f_k p_i x_1 x_j x_A y_l y_y beta_s theta_k \
J_0 Y_0 T_1 T_f V_a V_A F_j cal(F)_j lambda_y \
attach(W, tl: l) attach(A, tl: 2) attach(cal(V), tl: beta)
attach(cal(P), tl: iota) attach(f, bl: i) attach(A, bl: x)
attach(cal(J), bl: xi) attach(cal(A), bl: m) $
--- math-attach-kerning-mixed ---
// Test mixtures of math kerning.
#show math.equation: set text(font: "STIX Two Math")
$ x_1^i x_2^lambda x_2^(2alpha) x_2^(k+1) x_2^(-p_(-1)) x_j^gamma \
f_2^2 v_0^2 z_0^2 beta_s^2 xi_i^k J_1^2 N_(k y)^(-1) V_pi^x \
attach(J, tl: 1, br: i) attach(P, tl: i, br: 2) B_i_0 phi.alt_i_(n-1)
attach(A, tr: x, bl: x, br: x, tl: x) attach(F, tl: i, tr: f) \
attach(cal(A), tl: 2, bl: o) attach(cal(J), bl: l, br: A)
attach(cal(y), tr: p, bl: n t) attach(cal(O), tl: 16, tr: +, br: sigma)
attach(italic(Upsilon), tr: s, br: Psi, bl: d) $
--- math-attach-nested-base ---
// Test attachments when the base has attachments.
$ attach(a^b, b: c) quad
attach(attach(attach(attach(attach(attach(sum, tl: 1), t: 2), tr: 3), br: 4), b: 5), bl: 6) $
#let a0 = math.attach(math.alpha, b: [0])
#let a1 = $alpha^1$
#let a2 = $attach(a1, bl: 3)$
$ a0 + a1 + a0_2 \
a1_2 + a0^2 + a1^2 \
a2 + a2_2 + a2^2 $
--- math-attach-nested-deep-base ---
// Test attachments when the base has attachments and is nested arbitrarily
// deep.
#{
let var = $x^1$
for i in range(24) {
var = $var$
}
$var_2$
}
--- math-attach-scripts-extended-shapes ---
// Test script attachments positioning if the base is an extended shape (or a
// sequence of extended shapes).
$lr(size: #130%, [x])_0^1, [x]_0^1, \]_0^1, x_0^1, A_0^1$ \
$n^2, (n + 1)^2, sum_0^1, integral_0^1$