typst/src/syntax/parser.rs
2023-03-11 18:29:48 +01:00

1311 lines
34 KiB
Rust

use std::collections::HashSet;
use std::ops::Range;
use ecow::{eco_format, EcoString};
use unicode_math_class::MathClass;
use super::{ast, is_newline, ErrorPos, LexMode, Lexer, SyntaxKind, SyntaxNode};
/// Parse a source file.
pub fn parse(text: &str) -> SyntaxNode {
let mut p = Parser::new(text, 0, LexMode::Markup);
markup(&mut p, true, 0, |_| false);
p.finish().into_iter().next().unwrap()
}
/// Parse code directly.
///
/// This is only used for syntax highlighting.
pub fn parse_code(text: &str) -> SyntaxNode {
let mut p = Parser::new(text, 0, LexMode::Code);
code(&mut p, |_| false);
p.finish().into_iter().next().unwrap()
}
fn markup(
p: &mut Parser,
mut at_start: bool,
min_indent: usize,
mut stop: impl FnMut(&Parser) -> bool,
) {
let m = p.marker();
let mut nesting: usize = 0;
while !p.eof() {
match p.current() {
SyntaxKind::LeftBracket => nesting += 1,
SyntaxKind::RightBracket if nesting > 0 => nesting -= 1,
_ if stop(p) => break,
_ => {}
}
if p.newline() {
at_start = true;
if min_indent > 0 && p.column(p.current_end()) < min_indent {
break;
}
p.eat();
continue;
}
let prev = p.prev_end();
markup_expr(p, &mut at_start);
if !p.progress(prev) {
p.unexpected();
}
}
p.wrap(m, SyntaxKind::Markup);
}
pub(super) fn reparse_markup(
text: &str,
range: Range<usize>,
at_start: &mut bool,
nesting: &mut usize,
mut stop: impl FnMut(SyntaxKind) -> bool,
) -> Option<Vec<SyntaxNode>> {
let mut p = Parser::new(text, range.start, LexMode::Markup);
while !p.eof() && p.current_start() < range.end {
match p.current() {
SyntaxKind::LeftBracket => *nesting += 1,
SyntaxKind::RightBracket if *nesting > 0 => *nesting -= 1,
_ if stop(p.current) => break,
_ => {}
}
if p.newline() {
*at_start = true;
p.eat();
continue;
}
let prev = p.prev_end();
markup_expr(&mut p, at_start);
if !p.progress(prev) {
p.unexpected();
}
}
(p.balanced && p.current_start() == range.end).then(|| p.finish())
}
fn markup_expr(p: &mut Parser, at_start: &mut bool) {
match p.current() {
SyntaxKind::Space
| SyntaxKind::Parbreak
| SyntaxKind::LineComment
| SyntaxKind::BlockComment => {
p.eat();
return;
}
SyntaxKind::Text
| SyntaxKind::Linebreak
| SyntaxKind::Escape
| SyntaxKind::Shorthand
| SyntaxKind::SmartQuote
| SyntaxKind::Raw
| SyntaxKind::Link
| SyntaxKind::Label
| SyntaxKind::Ref => p.eat(),
SyntaxKind::Hashtag => embedded_code_expr(p),
SyntaxKind::Star => strong(p),
SyntaxKind::Underscore => emph(p),
SyntaxKind::HeadingMarker if *at_start => heading(p),
SyntaxKind::ListMarker if *at_start => list_item(p),
SyntaxKind::EnumMarker if *at_start => enum_item(p),
SyntaxKind::TermMarker if *at_start => term_item(p),
SyntaxKind::Dollar => formula(p),
SyntaxKind::LeftBracket
| SyntaxKind::RightBracket
| SyntaxKind::HeadingMarker
| SyntaxKind::ListMarker
| SyntaxKind::EnumMarker
| SyntaxKind::TermMarker
| SyntaxKind::Colon => p.convert(SyntaxKind::Text),
_ => {}
}
*at_start = false;
}
fn strong(p: &mut Parser) {
let m = p.marker();
p.assert(SyntaxKind::Star);
markup(p, false, 0, |p| {
p.at(SyntaxKind::Star)
|| p.at(SyntaxKind::Parbreak)
|| p.at(SyntaxKind::RightBracket)
});
p.expect(SyntaxKind::Star);
p.wrap(m, SyntaxKind::Strong);
}
fn emph(p: &mut Parser) {
let m = p.marker();
p.assert(SyntaxKind::Underscore);
markup(p, false, 0, |p| {
p.at(SyntaxKind::Underscore)
|| p.at(SyntaxKind::Parbreak)
|| p.at(SyntaxKind::RightBracket)
});
p.expect(SyntaxKind::Underscore);
p.wrap(m, SyntaxKind::Emph);
}
fn heading(p: &mut Parser) {
let m = p.marker();
p.assert(SyntaxKind::HeadingMarker);
whitespace_line(p);
markup(p, false, usize::MAX, |p| {
p.at(SyntaxKind::Label)
|| p.at(SyntaxKind::RightBracket)
|| (p.at(SyntaxKind::Space) && p.lexer.clone().next() == SyntaxKind::Label)
});
p.wrap(m, SyntaxKind::Heading);
}
fn list_item(p: &mut Parser) {
let m = p.marker();
p.assert(SyntaxKind::ListMarker);
let min_indent = p.column(p.prev_end());
whitespace_line(p);
markup(p, false, min_indent, |p| p.at(SyntaxKind::RightBracket));
p.wrap(m, SyntaxKind::ListItem);
}
fn enum_item(p: &mut Parser) {
let m = p.marker();
p.assert(SyntaxKind::EnumMarker);
let min_indent = p.column(p.prev_end());
whitespace_line(p);
markup(p, false, min_indent, |p| p.at(SyntaxKind::RightBracket));
p.wrap(m, SyntaxKind::EnumItem);
}
fn term_item(p: &mut Parser) {
let m = p.marker();
p.assert(SyntaxKind::TermMarker);
let min_indent = p.column(p.prev_end());
whitespace_line(p);
markup(p, false, usize::MAX, |p| {
p.at(SyntaxKind::Colon) || p.at(SyntaxKind::RightBracket)
});
p.expect(SyntaxKind::Colon);
whitespace_line(p);
markup(p, false, min_indent, |p| p.at(SyntaxKind::RightBracket));
p.wrap(m, SyntaxKind::TermItem);
}
fn whitespace_line(p: &mut Parser) {
while !p.newline() && p.current().is_trivia() {
p.eat();
}
}
fn formula(p: &mut Parser) {
let m = p.marker();
p.enter(LexMode::Math);
p.assert(SyntaxKind::Dollar);
math(p, |kind| kind == SyntaxKind::Dollar);
p.expect(SyntaxKind::Dollar);
p.exit();
p.wrap(m, SyntaxKind::Formula);
}
fn math(p: &mut Parser, mut stop: impl FnMut(SyntaxKind) -> bool) {
let m = p.marker();
while !p.eof() && !stop(p.current()) {
let prev = p.prev_end();
math_expr(p);
if !p.progress(prev) {
p.unexpected();
}
}
p.wrap(m, SyntaxKind::Math);
}
fn math_expr(p: &mut Parser) {
math_expr_prec(p, 0, SyntaxKind::Eof)
}
fn math_expr_prec(p: &mut Parser, min_prec: usize, stop: SyntaxKind) {
let m = p.marker();
let mut continuable = false;
match p.current() {
SyntaxKind::Hashtag => embedded_code_expr(p),
SyntaxKind::MathIdent => {
continuable = true;
p.eat();
while p.directly_at(SyntaxKind::Text)
&& p.current_text() == "."
&& matches!(
p.lexer.clone().next(),
SyntaxKind::MathIdent | SyntaxKind::Text
)
{
p.convert(SyntaxKind::Dot);
p.convert(SyntaxKind::Ident);
p.wrap(m, SyntaxKind::FieldAccess);
}
if min_prec < 3 && p.directly_at(SyntaxKind::Text) && p.current_text() == "("
{
math_args(p);
p.wrap(m, SyntaxKind::FuncCall);
continuable = false;
}
}
SyntaxKind::Text | SyntaxKind::Shorthand => {
continuable = matches!(
math_class(p.current_text()),
None | Some(MathClass::Alphabetic)
);
if !maybe_delimited(p, true) {
p.eat();
}
}
SyntaxKind::Linebreak | SyntaxKind::MathAlignPoint => p.eat(),
SyntaxKind::Escape | SyntaxKind::Str => {
continuable = true;
p.eat();
}
_ => p.expected("expression"),
}
if continuable
&& min_prec < 3
&& p.prev_end() == p.current_start()
&& maybe_delimited(p, false)
{
p.wrap(m, SyntaxKind::Math);
}
while !p.eof() && !p.at(stop) {
let Some((kind, stop, assoc, mut prec)) = math_op(p.current()) else {
break;
};
if prec < min_prec {
break;
}
match assoc {
ast::Assoc::Left => prec += 1,
ast::Assoc::Right => {}
}
if kind == SyntaxKind::MathFrac {
math_unparen(p, m);
}
p.eat();
let m2 = p.marker();
math_expr_prec(p, prec, stop);
math_unparen(p, m2);
if p.eat_if(SyntaxKind::Underscore) || p.eat_if(SyntaxKind::Hat) {
let m3 = p.marker();
math_expr_prec(p, prec, SyntaxKind::Eof);
math_unparen(p, m3);
}
p.wrap(m, kind);
}
}
fn maybe_delimited(p: &mut Parser, allow_fence: bool) -> bool {
if allow_fence && math_class(p.current_text()) == Some(MathClass::Fence) {
math_delimited(p, MathClass::Fence);
true
} else if math_class(p.current_text()) == Some(MathClass::Opening) {
math_delimited(p, MathClass::Closing);
true
} else {
false
}
}
fn math_delimited(p: &mut Parser, stop: MathClass) {
let m = p.marker();
p.eat();
let m2 = p.marker();
while !p.eof() && !p.at(SyntaxKind::Dollar) {
let class = math_class(p.current_text());
if stop == MathClass::Fence && class == Some(MathClass::Closing) {
break;
}
if class == Some(stop) {
p.wrap(m2, SyntaxKind::Math);
p.eat();
p.wrap(m, SyntaxKind::MathDelimited);
return;
}
let prev = p.prev_end();
math_expr(p);
if !p.progress(prev) {
p.unexpected();
}
}
}
fn math_unparen(p: &mut Parser, m: Marker) {
let Some(node) = p.nodes.get_mut(m.0) else { return };
if node.kind() != SyntaxKind::MathDelimited {
return;
}
if let [first, .., last] = node.children_mut() {
if first.text() == "(" && last.text() == ")" {
first.convert_to_kind(SyntaxKind::LeftParen);
last.convert_to_kind(SyntaxKind::RightParen);
}
}
node.convert_to_kind(SyntaxKind::Math);
}
fn math_class(text: &str) -> Option<MathClass> {
match text {
"[|" => return Some(MathClass::Opening),
"|]" => return Some(MathClass::Closing),
"||" => return Some(MathClass::Fence),
_ => {}
}
let mut chars = text.chars();
chars
.next()
.filter(|_| chars.next().is_none())
.and_then(unicode_math_class::class)
}
fn math_op(kind: SyntaxKind) -> Option<(SyntaxKind, SyntaxKind, ast::Assoc, usize)> {
match kind {
SyntaxKind::Underscore => {
Some((SyntaxKind::MathAttach, SyntaxKind::Hat, ast::Assoc::Right, 3))
}
SyntaxKind::Hat => {
Some((SyntaxKind::MathAttach, SyntaxKind::Underscore, ast::Assoc::Right, 3))
}
SyntaxKind::Slash => {
Some((SyntaxKind::MathFrac, SyntaxKind::Eof, ast::Assoc::Left, 1))
}
_ => None,
}
}
fn math_args(p: &mut Parser) {
let m = p.marker();
p.convert(SyntaxKind::LeftParen);
let mut namable = true;
let mut named = None;
let mut has_arrays = false;
let mut array = p.marker();
let mut arg = p.marker();
while !p.eof() && !p.at(SyntaxKind::Dollar) {
if namable
&& (p.at(SyntaxKind::MathIdent) || p.at(SyntaxKind::Text))
&& p.text[p.current_end()..].starts_with(':')
{
p.convert(SyntaxKind::Ident);
p.convert(SyntaxKind::Colon);
named = Some(arg);
arg = p.marker();
}
match p.current_text() {
")" => break,
";" => {
maybe_wrap_in_math(p, arg, named);
p.wrap(array, SyntaxKind::Array);
p.convert(SyntaxKind::Semicolon);
array = p.marker();
arg = p.marker();
namable = true;
named = None;
has_arrays = true;
continue;
}
"," => {
maybe_wrap_in_math(p, arg, named);
p.convert(SyntaxKind::Comma);
arg = p.marker();
namable = true;
named = None;
continue;
}
_ => {}
}
let prev = p.prev_end();
math_expr(p);
if !p.progress(prev) {
p.unexpected();
}
namable = false;
}
if arg != p.marker() {
maybe_wrap_in_math(p, arg, named);
}
if has_arrays && array != p.marker() {
p.wrap(array, SyntaxKind::Array);
}
if p.at(SyntaxKind::Text) && p.current_text() == ")" {
p.convert(SyntaxKind::RightParen);
} else {
p.expected("closing paren");
p.balanced = false;
}
p.wrap(m, SyntaxKind::Args);
}
fn maybe_wrap_in_math(p: &mut Parser, arg: Marker, named: Option<Marker>) {
let exprs = p.post_process(arg).filter(|node| node.is::<ast::Expr>()).count();
if exprs != 1 {
p.wrap(arg, SyntaxKind::Math);
}
if let Some(m) = named {
p.wrap(m, SyntaxKind::Named);
}
}
fn code(p: &mut Parser, mut stop: impl FnMut(SyntaxKind) -> bool) {
let m = p.marker();
while !p.eof() && !stop(p.current()) {
p.stop_at_newline(true);
let prev = p.prev_end();
code_expr(p);
if p.progress(prev)
&& !p.eof()
&& !stop(p.current())
&& !p.eat_if(SyntaxKind::Semicolon)
{
p.expected("semicolon or line break");
}
p.unstop();
if !p.progress(prev) && !p.eof() {
p.unexpected();
}
}
p.wrap(m, SyntaxKind::Code);
}
fn code_expr(p: &mut Parser) {
code_expr_prec(p, false, 0)
}
fn embedded_code_expr(p: &mut Parser) {
p.stop_at_newline(true);
p.enter(LexMode::Code);
p.assert(SyntaxKind::Hashtag);
p.unskip();
let stmt = matches!(
p.current(),
SyntaxKind::Let
| SyntaxKind::Set
| SyntaxKind::Show
| SyntaxKind::Import
| SyntaxKind::Include
);
let prev = p.prev_end();
code_expr_prec(p, true, 0);
// Consume error for things like `#12p` or `#"abc\"`.
if !p.progress(prev) {
p.unexpected();
}
let semi =
(stmt || p.directly_at(SyntaxKind::Semicolon)) && p.eat_if(SyntaxKind::Semicolon);
if stmt && !semi && !p.eof() && !p.at(SyntaxKind::RightBracket) {
p.expected("semicolon or line break");
}
p.exit();
p.unstop();
}
fn code_expr_prec(p: &mut Parser, atomic: bool, min_prec: usize) {
let m = p.marker();
if let (false, Some(op)) = (atomic, ast::UnOp::from_kind(p.current())) {
p.eat();
code_expr_prec(p, atomic, op.precedence());
p.wrap(m, SyntaxKind::Unary);
} else {
code_primary(p, atomic);
}
loop {
if p.directly_at(SyntaxKind::LeftParen) || p.directly_at(SyntaxKind::LeftBracket)
{
args(p);
p.wrap(m, SyntaxKind::FuncCall);
continue;
}
let at_field_or_method =
p.directly_at(SyntaxKind::Dot) && p.lexer.clone().next() == SyntaxKind::Ident;
if atomic && !at_field_or_method {
break;
}
if p.eat_if(SyntaxKind::Dot) {
p.expect(SyntaxKind::Ident);
p.wrap(m, SyntaxKind::FieldAccess);
continue;
}
let binop =
if ast::BinOp::NotIn.precedence() >= min_prec && p.eat_if(SyntaxKind::Not) {
if p.at(SyntaxKind::In) {
Some(ast::BinOp::NotIn)
} else {
p.expected("keyword `in`");
break;
}
} else {
ast::BinOp::from_kind(p.current())
};
if let Some(op) = binop {
let mut prec = op.precedence();
if prec < min_prec {
break;
}
match op.assoc() {
ast::Assoc::Left => prec += 1,
ast::Assoc::Right => {}
}
p.eat();
code_expr_prec(p, false, prec);
p.wrap(m, SyntaxKind::Binary);
continue;
}
break;
}
}
fn code_primary(p: &mut Parser, atomic: bool) {
let m = p.marker();
match p.current() {
SyntaxKind::Ident => {
p.eat();
if !atomic && p.at(SyntaxKind::Arrow) {
p.wrap(m, SyntaxKind::Params);
p.assert(SyntaxKind::Arrow);
code_expr(p);
p.wrap(m, SyntaxKind::Closure);
}
}
SyntaxKind::LeftBrace => code_block(p),
SyntaxKind::LeftBracket => content_block(p),
SyntaxKind::LeftParen => with_paren(p),
SyntaxKind::Dollar => formula(p),
SyntaxKind::Let => let_binding(p),
SyntaxKind::Set => set_rule(p),
SyntaxKind::Show => show_rule(p),
SyntaxKind::If => conditional(p),
SyntaxKind::While => while_loop(p),
SyntaxKind::For => for_loop(p),
SyntaxKind::Import => module_import(p),
SyntaxKind::Include => module_include(p),
SyntaxKind::Break => break_stmt(p),
SyntaxKind::Continue => continue_stmt(p),
SyntaxKind::Return => return_stmt(p),
SyntaxKind::None
| SyntaxKind::Auto
| SyntaxKind::Int
| SyntaxKind::Float
| SyntaxKind::Bool
| SyntaxKind::Numeric
| SyntaxKind::Str
| SyntaxKind::Label
| SyntaxKind::Raw => p.eat(),
_ => p.expected("expression"),
}
}
fn block(p: &mut Parser) {
match p.current() {
SyntaxKind::LeftBracket => content_block(p),
SyntaxKind::LeftBrace => code_block(p),
_ => p.expected("block"),
}
}
pub(super) fn reparse_block(text: &str, range: Range<usize>) -> Option<SyntaxNode> {
let mut p = Parser::new(text, range.start, LexMode::Code);
assert!(p.at(SyntaxKind::LeftBracket) || p.at(SyntaxKind::LeftBrace));
block(&mut p);
(p.balanced && p.prev_end() == range.end)
.then(|| p.finish().into_iter().next().unwrap())
}
fn code_block(p: &mut Parser) {
let m = p.marker();
p.enter(LexMode::Code);
p.stop_at_newline(false);
p.assert(SyntaxKind::LeftBrace);
code(p, |kind| kind == SyntaxKind::RightBrace);
p.expect(SyntaxKind::RightBrace);
p.exit();
p.unstop();
p.wrap(m, SyntaxKind::CodeBlock);
}
fn content_block(p: &mut Parser) {
let m = p.marker();
p.enter(LexMode::Markup);
p.assert(SyntaxKind::LeftBracket);
markup(p, true, 0, |p| p.at(SyntaxKind::RightBracket));
p.expect(SyntaxKind::RightBracket);
p.exit();
p.wrap(m, SyntaxKind::ContentBlock);
}
fn with_paren(p: &mut Parser) {
let m = p.marker();
let mut kind = collection(p, true);
if p.at(SyntaxKind::Arrow) {
validate_params(p, m);
p.wrap(m, SyntaxKind::Params);
p.assert(SyntaxKind::Arrow);
code_expr(p);
kind = SyntaxKind::Closure;
}
match kind {
SyntaxKind::Array => validate_array(p, m),
SyntaxKind::Dict => validate_dict(p, m),
_ => {}
}
p.wrap(m, kind);
}
fn collection(p: &mut Parser, keyed: bool) -> SyntaxKind {
p.stop_at_newline(false);
p.assert(SyntaxKind::LeftParen);
let mut count = 0;
let mut parenthesized = true;
let mut kind = None;
if keyed && p.eat_if(SyntaxKind::Colon) {
kind = Some(SyntaxKind::Dict);
parenthesized = false;
}
while !p.current().is_terminator() {
let prev = p.prev_end();
match item(p, keyed) {
SyntaxKind::Spread => parenthesized = false,
SyntaxKind::Named | SyntaxKind::Keyed if kind.is_none() => {
kind = Some(SyntaxKind::Dict);
parenthesized = false;
}
_ if kind.is_none() => kind = Some(SyntaxKind::Array),
_ => {}
}
if !p.progress(prev) {
p.unexpected();
continue;
}
count += 1;
if p.current().is_terminator() {
break;
}
if p.expect(SyntaxKind::Comma) {
parenthesized = false;
}
}
p.expect(SyntaxKind::RightParen);
p.unstop();
if parenthesized && count == 1 {
SyntaxKind::Parenthesized
} else {
kind.unwrap_or(SyntaxKind::Array)
}
}
fn item(p: &mut Parser, keyed: bool) -> SyntaxKind {
let m = p.marker();
if p.eat_if(SyntaxKind::Dots) {
code_expr(p);
p.wrap(m, SyntaxKind::Spread);
return SyntaxKind::Spread;
}
code_expr(p);
if !p.eat_if(SyntaxKind::Colon) {
return SyntaxKind::Int;
}
code_expr(p);
let kind = match p.node(m).map(SyntaxNode::kind) {
Some(SyntaxKind::Ident) => SyntaxKind::Named,
Some(SyntaxKind::Str) if keyed => SyntaxKind::Keyed,
_ => {
for child in p.post_process(m) {
if child.kind() == SyntaxKind::Colon {
break;
}
let mut message = EcoString::from("expected identifier");
if keyed {
message.push_str(" or string");
}
message.push_str(", found ");
message.push_str(child.kind().name());
child.convert_to_error(message);
}
SyntaxKind::Named
}
};
p.wrap(m, kind);
kind
}
fn args(p: &mut Parser) {
if !p.at(SyntaxKind::LeftParen) && !p.at(SyntaxKind::LeftBracket) {
p.expected("argument list");
}
let m = p.marker();
if p.at(SyntaxKind::LeftParen) {
collection(p, false);
validate_args(p, m);
}
while p.directly_at(SyntaxKind::LeftBracket) {
content_block(p);
}
p.wrap(m, SyntaxKind::Args);
}
fn let_binding(p: &mut Parser) {
let m = p.marker();
p.assert(SyntaxKind::Let);
let m2 = p.marker();
p.expect(SyntaxKind::Ident);
let closure = p.directly_at(SyntaxKind::LeftParen);
if closure {
let m3 = p.marker();
collection(p, false);
validate_params(p, m3);
p.wrap(m3, SyntaxKind::Params);
}
let f = if closure { Parser::expect } else { Parser::eat_if };
if f(p, SyntaxKind::Eq) {
code_expr(p);
}
if closure {
p.wrap(m2, SyntaxKind::Closure);
}
p.wrap(m, SyntaxKind::LetBinding);
}
fn set_rule(p: &mut Parser) {
let m = p.marker();
p.assert(SyntaxKind::Set);
let m2 = p.marker();
p.expect(SyntaxKind::Ident);
while p.eat_if(SyntaxKind::Dot) {
p.expect(SyntaxKind::Ident);
p.wrap(m2, SyntaxKind::FieldAccess);
}
args(p);
if p.eat_if(SyntaxKind::If) {
code_expr(p);
}
p.wrap(m, SyntaxKind::SetRule);
}
fn show_rule(p: &mut Parser) {
let m = p.marker();
p.assert(SyntaxKind::Show);
if !p.at(SyntaxKind::Colon) {
code_expr(p);
}
p.expect(SyntaxKind::Colon);
code_expr(p);
p.wrap(m, SyntaxKind::ShowRule);
}
fn conditional(p: &mut Parser) {
let m = p.marker();
p.assert(SyntaxKind::If);
code_expr(p);
block(p);
if p.eat_if(SyntaxKind::Else) {
if p.at(SyntaxKind::If) {
conditional(p);
} else {
block(p);
}
}
p.wrap(m, SyntaxKind::Conditional);
}
fn while_loop(p: &mut Parser) {
let m = p.marker();
p.assert(SyntaxKind::While);
code_expr(p);
block(p);
p.wrap(m, SyntaxKind::WhileLoop);
}
fn for_loop(p: &mut Parser) {
let m = p.marker();
p.assert(SyntaxKind::For);
for_pattern(p);
p.expect(SyntaxKind::In);
code_expr(p);
block(p);
p.wrap(m, SyntaxKind::ForLoop);
}
fn for_pattern(p: &mut Parser) {
let m = p.marker();
if p.expect(SyntaxKind::Ident) {
if p.eat_if(SyntaxKind::Comma) {
p.expect(SyntaxKind::Ident);
}
p.wrap(m, SyntaxKind::ForPattern);
}
}
fn module_import(p: &mut Parser) {
let m = p.marker();
p.assert(SyntaxKind::Import);
code_expr(p);
if p.eat_if(SyntaxKind::Colon) && !p.eat_if(SyntaxKind::Star) {
import_items(p);
}
p.wrap(m, SyntaxKind::ModuleImport);
}
fn import_items(p: &mut Parser) {
let m = p.marker();
while !p.eof() && !p.at(SyntaxKind::Semicolon) {
if !p.eat_if(SyntaxKind::Ident) {
p.unexpected();
}
if p.current().is_terminator() {
break;
}
p.expect(SyntaxKind::Comma);
}
p.wrap(m, SyntaxKind::ImportItems);
}
fn module_include(p: &mut Parser) {
let m = p.marker();
p.assert(SyntaxKind::Include);
code_expr(p);
p.wrap(m, SyntaxKind::ModuleInclude);
}
fn break_stmt(p: &mut Parser) {
let m = p.marker();
p.assert(SyntaxKind::Break);
p.wrap(m, SyntaxKind::LoopBreak);
}
fn continue_stmt(p: &mut Parser) {
let m = p.marker();
p.assert(SyntaxKind::Continue);
p.wrap(m, SyntaxKind::LoopContinue);
}
fn return_stmt(p: &mut Parser) {
let m = p.marker();
p.assert(SyntaxKind::Return);
if !p.current().is_terminator() && !p.at(SyntaxKind::Comma) {
code_expr(p);
}
p.wrap(m, SyntaxKind::FuncReturn);
}
fn validate_array(p: &mut Parser, m: Marker) {
for child in p.post_process(m) {
let kind = child.kind();
if kind == SyntaxKind::Named || kind == SyntaxKind::Keyed {
child.convert_to_error(eco_format!(
"expected expression, found {}",
kind.name()
));
}
}
}
fn validate_dict(p: &mut Parser, m: Marker) {
let mut used = HashSet::new();
for child in p.post_process(m) {
match child.kind() {
SyntaxKind::Named | SyntaxKind::Keyed => {
let Some(first) = child.children_mut().first_mut() else { continue };
let key = match first.cast::<ast::Str>() {
Some(str) => str.get(),
None => first.text().clone(),
};
if !used.insert(key) {
first.convert_to_error("duplicate key");
child.make_erroneous();
}
}
SyntaxKind::Spread => {}
SyntaxKind::LeftParen
| SyntaxKind::RightParen
| SyntaxKind::Comma
| SyntaxKind::Colon => {}
kind => {
child.convert_to_error(eco_format!(
"expected named or keyed pair, found {}",
kind.name()
));
}
}
}
}
fn validate_params(p: &mut Parser, m: Marker) {
let mut used = HashSet::new();
for child in p.post_process(m) {
match child.kind() {
SyntaxKind::Ident => {
if !used.insert(child.text().clone()) {
child.convert_to_error("duplicate parameter");
}
}
SyntaxKind::Named => {
let Some(within) = child.children_mut().first_mut() else { return };
if !used.insert(within.text().clone()) {
within.convert_to_error("duplicate parameter");
child.make_erroneous();
}
}
SyntaxKind::Spread => {
let Some(within) = child.children_mut().last_mut() else { continue };
if within.kind() != SyntaxKind::Ident {
within.convert_to_error(eco_format!(
"expected identifier, found {}",
within.kind().name(),
));
child.make_erroneous();
}
}
SyntaxKind::LeftParen | SyntaxKind::RightParen | SyntaxKind::Comma => {}
kind => {
child.convert_to_error(eco_format!(
"expected identifier, named pair or argument sink, found {}",
kind.name()
));
}
}
}
}
fn validate_args(p: &mut Parser, m: Marker) {
let mut used = HashSet::new();
for child in p.post_process(m) {
if child.kind() == SyntaxKind::Named {
let Some(within) = child.children_mut().first_mut() else { return };
if !used.insert(within.text().clone()) {
within.convert_to_error("duplicate argument");
child.make_erroneous();
}
}
}
}
/// Manages parsing of a stream of tokens.
struct Parser<'s> {
text: &'s str,
lexer: Lexer<'s>,
prev_end: usize,
current_start: usize,
current: SyntaxKind,
modes: Vec<LexMode>,
nodes: Vec<SyntaxNode>,
stop_at_newline: Vec<bool>,
balanced: bool,
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
struct Marker(usize);
impl<'s> Parser<'s> {
fn new(text: &'s str, offset: usize, mode: LexMode) -> Self {
let mut lexer = Lexer::new(text, mode);
lexer.jump(offset);
let current = lexer.next();
Self {
lexer,
text,
prev_end: offset,
current_start: offset,
current,
modes: vec![],
nodes: vec![],
stop_at_newline: vec![],
balanced: true,
}
}
fn finish(self) -> Vec<SyntaxNode> {
self.nodes
}
fn prev_end(&self) -> usize {
self.prev_end
}
fn current(&self) -> SyntaxKind {
self.current
}
fn current_start(&self) -> usize {
self.current_start
}
fn current_end(&self) -> usize {
self.lexer.cursor()
}
fn current_text(&self) -> &'s str {
&self.text[self.current_start..self.current_end()]
}
fn at(&self, kind: SyntaxKind) -> bool {
self.current == kind
}
#[track_caller]
fn assert(&mut self, kind: SyntaxKind) {
assert_eq!(self.current, kind);
self.eat();
}
fn eof(&self) -> bool {
self.at(SyntaxKind::Eof)
}
fn directly_at(&self, kind: SyntaxKind) -> bool {
self.current == kind && self.prev_end == self.current_start
}
fn eat_if(&mut self, kind: SyntaxKind) -> bool {
let at = self.at(kind);
if at {
self.eat();
}
at
}
fn convert(&mut self, kind: SyntaxKind) {
self.current = kind;
self.eat();
}
fn newline(&mut self) -> bool {
self.lexer.newline()
}
fn column(&self, at: usize) -> usize {
self.text[..at].chars().rev().take_while(|&c| !is_newline(c)).count()
}
fn marker(&self) -> Marker {
Marker(self.nodes.len())
}
fn node(&self, m: Marker) -> Option<&SyntaxNode> {
self.nodes.get(m.0)
}
fn post_process(&mut self, m: Marker) -> impl Iterator<Item = &mut SyntaxNode> {
self.nodes[m.0..]
.iter_mut()
.filter(|child| !child.kind().is_error() && !child.kind().is_trivia())
}
fn wrap(&mut self, m: Marker, kind: SyntaxKind) {
self.unskip();
let from = m.0.min(self.nodes.len());
let children = self.nodes.drain(from..).collect();
self.nodes.push(SyntaxNode::inner(kind, children));
self.skip();
}
fn progress(&self, offset: usize) -> bool {
offset < self.prev_end
}
fn enter(&mut self, mode: LexMode) {
self.modes.push(self.lexer.mode());
self.lexer.set_mode(mode);
}
fn exit(&mut self) {
let mode = self.modes.pop().unwrap();
if mode != self.lexer.mode() {
self.unskip();
self.lexer.set_mode(mode);
self.lexer.jump(self.current_start);
self.lex();
self.skip();
}
}
fn stop_at_newline(&mut self, stop: bool) {
self.stop_at_newline.push(stop);
}
fn unstop(&mut self) {
self.unskip();
self.stop_at_newline.pop();
self.lexer.jump(self.prev_end);
self.lex();
self.skip();
}
fn eat(&mut self) {
self.save();
self.lex();
self.skip();
}
fn skip(&mut self) {
if self.lexer.mode() != LexMode::Markup {
while self.current.is_trivia() {
self.save();
self.lex();
}
}
}
fn unskip(&mut self) {
if self.lexer.mode() != LexMode::Markup && self.prev_end != self.current_start {
while self.nodes.last().map_or(false, |last| last.kind().is_trivia()) {
self.nodes.pop();
}
self.lexer.jump(self.prev_end);
self.lex();
}
}
fn save(&mut self) {
let text = self.current_text();
if self.at(SyntaxKind::Error) {
let (message, pos) = self.lexer.take_error().unwrap();
self.nodes.push(SyntaxNode::error(message, text, pos));
} else {
self.nodes.push(SyntaxNode::leaf(self.current, text));
}
if self.lexer.mode() == LexMode::Markup || !self.current.is_trivia() {
self.prev_end = self.current_end();
}
}
fn lex(&mut self) {
self.current_start = self.lexer.cursor();
self.current = self.lexer.next();
if self.lexer.mode() == LexMode::Code
&& self.lexer.newline()
&& self.stop_at_newline.last().copied().unwrap_or(false)
&& !matches!(self.lexer.clone().next(), SyntaxKind::Else | SyntaxKind::Dot)
{
self.current = SyntaxKind::Eof;
}
}
fn expect(&mut self, kind: SyntaxKind) -> bool {
let at = self.at(kind);
if at {
self.eat();
} else {
self.balanced &= !kind.is_grouping();
self.expected(kind.name());
}
at
}
fn expected(&mut self, thing: &str) {
self.unskip();
if self
.nodes
.last()
.map_or(true, |child| child.kind() != SyntaxKind::Error)
{
let message = eco_format!("expected {}", thing);
self.nodes.push(SyntaxNode::error(message, "", ErrorPos::Full));
}
self.skip();
}
fn unexpected(&mut self) {
self.unskip();
while self
.nodes
.last()
.map_or(false, |child| child.kind() == SyntaxKind::Error && child.len() == 0)
{
self.nodes.pop();
}
self.skip();
let kind = self.current;
let offset = self.nodes.len();
self.eat();
self.balanced &= !kind.is_grouping();
if !kind.is_error() {
self.nodes[offset]
.convert_to_error(eco_format!("unexpected {}", kind.name()));
}
}
}