mirror of
https://github.com/typst/typst
synced 2025-05-13 20:46:23 +08:00
719 lines
16 KiB
Rust
719 lines
16 KiB
Rust
//! Calculations and processing of numeric values.
|
|
|
|
use std::cmp::Ordering;
|
|
use std::ops::Rem;
|
|
|
|
use typst::eval::{Module, Scope};
|
|
|
|
use crate::prelude::*;
|
|
|
|
/// A module with computational functions.
|
|
pub fn module() -> Module {
|
|
let mut scope = Scope::new();
|
|
scope.define("abs", abs);
|
|
scope.define("pow", pow);
|
|
scope.define("sqrt", sqrt);
|
|
scope.define("sin", sin);
|
|
scope.define("cos", cos);
|
|
scope.define("tan", tan);
|
|
scope.define("asin", asin);
|
|
scope.define("acos", acos);
|
|
scope.define("atan", atan);
|
|
scope.define("sinh", sinh);
|
|
scope.define("cosh", cosh);
|
|
scope.define("tanh", tanh);
|
|
scope.define("log", log);
|
|
scope.define("floor", floor);
|
|
scope.define("ceil", ceil);
|
|
scope.define("round", round);
|
|
scope.define("clamp", clamp);
|
|
scope.define("min", min);
|
|
scope.define("max", max);
|
|
scope.define("even", even);
|
|
scope.define("odd", odd);
|
|
scope.define("mod", mod_);
|
|
scope.define("inf", Value::Float(f64::INFINITY));
|
|
scope.define("nan", Value::Float(f64::NAN));
|
|
scope.define("pi", Value::Float(std::f64::consts::PI));
|
|
scope.define("e", Value::Float(std::f64::consts::E));
|
|
Module::new("calc").with_scope(scope)
|
|
}
|
|
|
|
/// Calculate the absolute value of a numeric value.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #calc.abs(-5) \
|
|
/// #calc.abs(5pt - 2cm) \
|
|
/// #calc.abs(2fr)
|
|
/// ```
|
|
///
|
|
/// Display: Absolute
|
|
/// Category: calculate
|
|
/// Returns: any
|
|
#[func]
|
|
pub fn abs(
|
|
/// The value whose absolute value to calculate.
|
|
value: ToAbs,
|
|
) -> Value {
|
|
value.0
|
|
}
|
|
|
|
/// A value of which the absolute value can be taken.
|
|
struct ToAbs(Value);
|
|
|
|
cast_from_value! {
|
|
ToAbs,
|
|
v: i64 => Self(Value::Int(v.abs())),
|
|
v: f64 => Self(Value::Float(v.abs())),
|
|
v: Length => Self(Value::Length(v.try_abs()
|
|
.ok_or_else(|| "cannot take absolute value of this length")?)),
|
|
v: Angle => Self(Value::Angle(v.abs())),
|
|
v: Ratio => Self(Value::Ratio(v.abs())),
|
|
v: Fr => Self(Value::Fraction(v.abs())),
|
|
}
|
|
|
|
/// Raise a value to some exponent.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #calc.pow(2, 3)
|
|
/// ```
|
|
///
|
|
/// Display: Power
|
|
/// Category: calculate
|
|
/// Returns: integer or float
|
|
#[func]
|
|
pub fn pow(
|
|
/// The base of the power.
|
|
base: Num,
|
|
/// The exponent of the power. Must be non-negative.
|
|
exponent: Spanned<Num>,
|
|
) -> Value {
|
|
let Spanned { v: exp, span } = exponent;
|
|
match exp {
|
|
_ if exp.float() == 0.0 && base.float() == 0.0 => {
|
|
bail!(args.span, "zero to the power of zero is undefined")
|
|
}
|
|
Num::Int(i) if i32::try_from(i).is_err() => {
|
|
bail!(span, "exponent is too large")
|
|
}
|
|
Num::Float(f) if !f.is_normal() && f != 0.0 => {
|
|
bail!(span, "exponent may not be NaN, infinite, or subnormal")
|
|
}
|
|
_ => {}
|
|
};
|
|
|
|
let return_value = match (base, exp) {
|
|
(Num::Int(a), Num::Int(b)) if b >= 0 => Value::Int(a.pow(b as u32)),
|
|
(a, Num::Int(b)) => Value::Float(a.float().powi(b as i32)),
|
|
(a, b) => Value::Float(a.float().powf(b.float())),
|
|
};
|
|
|
|
let is_nan = match return_value {
|
|
Value::Float(f) => f.is_nan(),
|
|
Value::Int(i) => (i as f64).is_nan(),
|
|
_ => false,
|
|
};
|
|
|
|
if is_nan {
|
|
bail!(span, "the return value is not a real number")
|
|
}
|
|
|
|
return_value
|
|
}
|
|
|
|
/// Calculate the square root of a number.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #calc.sqrt(16) \
|
|
/// #calc.sqrt(2.5)
|
|
/// ```
|
|
///
|
|
/// Display: Square Root
|
|
/// Category: calculate
|
|
/// Returns: float
|
|
#[func]
|
|
pub fn sqrt(
|
|
/// The number whose square root to calculate. Must be non-negative.
|
|
value: Spanned<Num>,
|
|
) -> Value {
|
|
if value.v.float() < 0.0 {
|
|
bail!(value.span, "cannot take square root of negative number");
|
|
}
|
|
Value::Float(value.v.float().sqrt())
|
|
}
|
|
|
|
/// Calculate the sine of an angle.
|
|
///
|
|
/// When called with an integer or a float, they will be interpreted as
|
|
/// radians.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #assert(calc.sin(90deg) == calc.sin(-270deg))
|
|
/// #calc.sin(1.5) \
|
|
/// #calc.sin(90deg)
|
|
/// ```
|
|
///
|
|
/// Display: Sine
|
|
/// Category: calculate
|
|
/// Returns: float
|
|
#[func]
|
|
pub fn sin(
|
|
/// The angle whose sine to calculate.
|
|
angle: AngleLike,
|
|
) -> Value {
|
|
Value::Float(match angle {
|
|
AngleLike::Angle(a) => a.sin(),
|
|
AngleLike::Int(n) => (n as f64).sin(),
|
|
AngleLike::Float(n) => n.sin(),
|
|
})
|
|
}
|
|
|
|
/// Calculate the cosine of an angle.
|
|
///
|
|
/// When called with an integer or a float, they will be interpreted as
|
|
/// radians.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #calc.cos(90deg) \
|
|
/// #calc.cos(1.5) \
|
|
/// #calc.cos(90deg)
|
|
/// ```
|
|
///
|
|
/// Display: Cosine
|
|
/// Category: calculate
|
|
/// Returns: float
|
|
#[func]
|
|
pub fn cos(
|
|
/// The angle whose cosine to calculate.
|
|
angle: AngleLike,
|
|
) -> Value {
|
|
Value::Float(match angle {
|
|
AngleLike::Angle(a) => a.cos(),
|
|
AngleLike::Int(n) => (n as f64).cos(),
|
|
AngleLike::Float(n) => n.cos(),
|
|
})
|
|
}
|
|
|
|
/// Calculate the tangent of an angle.
|
|
///
|
|
/// When called with an integer or a float, they will be interpreted as
|
|
/// radians.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #calc.tan(1.5) \
|
|
/// #calc.tan(90deg)
|
|
/// ```
|
|
///
|
|
/// Display: Tangent
|
|
/// Category: calculate
|
|
/// Returns: float
|
|
#[func]
|
|
pub fn tan(
|
|
/// The angle whose tangent to calculate.
|
|
angle: AngleLike,
|
|
) -> Value {
|
|
Value::Float(match angle {
|
|
AngleLike::Angle(a) => a.tan(),
|
|
AngleLike::Int(n) => (n as f64).tan(),
|
|
AngleLike::Float(n) => n.tan(),
|
|
})
|
|
}
|
|
|
|
/// Calculate the arcsine of a number.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #calc.asin(0) \
|
|
/// #calc.asin(1)
|
|
/// ```
|
|
///
|
|
/// Display: Arcsine
|
|
/// Category: calculate
|
|
/// Returns: angle
|
|
#[func]
|
|
pub fn asin(
|
|
/// The number whose arcsine to calculate. Must be between -1 and 1.
|
|
value: Spanned<Num>,
|
|
) -> Value {
|
|
let val = value.v.float();
|
|
if val < -1.0 || val > 1.0 {
|
|
bail!(value.span, "arcsin must be between -1 and 1");
|
|
}
|
|
Value::Angle(Angle::rad(val.asin()))
|
|
}
|
|
|
|
/// Calculate the arccosine of a number.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #calc.acos(0) \
|
|
/// #calc.acos(1)
|
|
/// ```
|
|
///
|
|
/// Display: Arccosine
|
|
/// Category: calculate
|
|
/// Returns: angle
|
|
#[func]
|
|
pub fn acos(
|
|
/// The number whose arcsine to calculate. Must be between -1 and 1.
|
|
value: Spanned<Num>,
|
|
) -> Value {
|
|
let val = value.v.float();
|
|
if val < -1.0 || val > 1.0 {
|
|
bail!(value.span, "arccos must be between -1 and 1");
|
|
}
|
|
Value::Angle(Angle::rad(val.acos()))
|
|
}
|
|
|
|
/// Calculate the arctangent of a number.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #calc.atan(0) \
|
|
/// #calc.atan(1)
|
|
/// ```
|
|
///
|
|
/// Display: Arctangent
|
|
/// Category: calculate
|
|
/// Returns: angle
|
|
#[func]
|
|
pub fn atan(
|
|
/// The number whose arctangent to calculate.
|
|
value: Num,
|
|
) -> Value {
|
|
Value::Angle(Angle::rad(value.float().atan()))
|
|
}
|
|
|
|
/// Calculate the hyperbolic sine of an angle.
|
|
///
|
|
/// When called with an integer or a float, they will be interpreted as radians.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #calc.sinh(0) \
|
|
/// #calc.sinh(45deg)
|
|
/// ```
|
|
///
|
|
/// Display: Hyperbolic sine
|
|
/// Category: calculate
|
|
/// Returns: float
|
|
#[func]
|
|
pub fn sinh(
|
|
/// The angle whose hyperbolic sine to calculate.
|
|
angle: AngleLike,
|
|
) -> Value {
|
|
Value::Float(match angle {
|
|
AngleLike::Angle(a) => a.to_rad().sinh(),
|
|
AngleLike::Int(n) => (n as f64).sinh(),
|
|
AngleLike::Float(n) => n.sinh(),
|
|
})
|
|
}
|
|
|
|
/// Calculate the hyperbolic cosine of an angle.
|
|
///
|
|
/// When called with an integer or a float, they will be interpreted as radians.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #calc.cosh(0) \
|
|
/// #calc.cosh(45deg)
|
|
/// ```
|
|
///
|
|
/// Display: Hyperbolic cosine
|
|
/// Category: calculate
|
|
/// Returns: float
|
|
#[func]
|
|
pub fn cosh(
|
|
/// The angle whose hyperbolic cosine to calculate.
|
|
angle: AngleLike,
|
|
) -> Value {
|
|
Value::Float(match angle {
|
|
AngleLike::Angle(a) => a.to_rad().cosh(),
|
|
AngleLike::Int(n) => (n as f64).cosh(),
|
|
AngleLike::Float(n) => n.cosh(),
|
|
})
|
|
}
|
|
|
|
/// Calculate the hyperbolic tangent of an angle.
|
|
///
|
|
/// When called with an integer or a float, they will be interpreted as radians.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #calc.tanh(0) \
|
|
/// #calc.tanh(45deg)
|
|
/// ```
|
|
///
|
|
/// Display: Hyperbolic tangent
|
|
/// Category: calculate
|
|
/// Returns: float
|
|
#[func]
|
|
pub fn tanh(
|
|
/// The angle whose hyperbolic tangent to calculate.
|
|
angle: AngleLike,
|
|
) -> Value {
|
|
Value::Float(match angle {
|
|
AngleLike::Angle(a) => a.to_rad().tanh(),
|
|
AngleLike::Int(n) => (n as f64).tanh(),
|
|
AngleLike::Float(n) => n.tanh(),
|
|
})
|
|
}
|
|
|
|
/// Calculate the logarithm of a number.
|
|
///
|
|
/// If the base is not specified, the logarithm is calculated in base 10.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #calc.log(100)
|
|
/// ```
|
|
///
|
|
/// Display: Logarithm
|
|
/// Category: calculate
|
|
/// Returns: float
|
|
#[func]
|
|
pub fn log(
|
|
/// The number whose logarithm to calculate. It must be strictly positive.
|
|
value: Spanned<Num>,
|
|
/// The base of the logarithm. It can't be null.
|
|
#[named]
|
|
#[default(10.0)]
|
|
base: f64,
|
|
) -> Value {
|
|
let number = value.v.float();
|
|
|
|
if number <= 0 as f64 {
|
|
bail!(value.span, "a logarithm parameter must be strictly positive")
|
|
}
|
|
if !base.is_normal() {
|
|
bail!(value.span, "a logarithm base should be normal (not NaN, not infinite, non-null, not subnormal)")
|
|
}
|
|
|
|
let return_value = if base == 2.0 {
|
|
number.log2()
|
|
} else if base == 10.0 {
|
|
number.log10()
|
|
} else {
|
|
number.log(base)
|
|
};
|
|
|
|
if return_value.is_infinite() || return_value.is_nan() {
|
|
bail!(value.span, "this logarithm doesn't return a real value")
|
|
}
|
|
|
|
Value::Float(return_value)
|
|
}
|
|
|
|
/// Round a number down to the nearest integer.
|
|
///
|
|
/// If the number is already an integer, it is returned unchanged.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #assert(calc.floor(3.14) == 3)
|
|
/// #assert(calc.floor(3) == 3)
|
|
/// #calc.floor(500.1)
|
|
/// ```
|
|
///
|
|
/// Display: Round down
|
|
/// Category: calculate
|
|
/// Returns: integer
|
|
#[func]
|
|
pub fn floor(
|
|
/// The number to round down.
|
|
value: Num,
|
|
) -> Value {
|
|
match value {
|
|
Num::Int(n) => Value::Int(n),
|
|
Num::Float(n) => Value::Int(n.floor() as i64),
|
|
}
|
|
}
|
|
|
|
/// Round a number up to the nearest integer.
|
|
///
|
|
/// If the number is already an integer, it is returned unchanged.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #assert(calc.ceil(3.14) == 4)
|
|
/// #assert(calc.ceil(3) == 3)
|
|
/// #calc.ceil(500.1)
|
|
/// ```
|
|
///
|
|
/// Display: Round up
|
|
/// Category: calculate
|
|
/// Returns: integer
|
|
#[func]
|
|
pub fn ceil(
|
|
/// The number to round up.
|
|
value: Num,
|
|
) -> Value {
|
|
match value {
|
|
Num::Int(n) => Value::Int(n),
|
|
Num::Float(n) => Value::Int(n.ceil() as i64),
|
|
}
|
|
}
|
|
|
|
/// Round a number to the nearest integer.
|
|
///
|
|
/// Optionally, a number of decimal places can be specified.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #assert(calc.round(3.14) == 3)
|
|
/// #assert(calc.round(3.5) == 4)
|
|
/// #calc.round(3.1415, digits: 2)
|
|
/// ```
|
|
///
|
|
/// Display: Round
|
|
/// Category: calculate
|
|
/// Returns: integer or float
|
|
#[func]
|
|
pub fn round(
|
|
/// The number to round.
|
|
value: Num,
|
|
/// The number of decimal places.
|
|
#[named]
|
|
#[default(0)]
|
|
digits: i64,
|
|
) -> Value {
|
|
match value {
|
|
Num::Int(n) if digits == 0 => Value::Int(n),
|
|
_ => {
|
|
let n = value.float();
|
|
let factor = 10.0_f64.powi(digits as i32);
|
|
Value::Float((n * factor).round() / factor)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Clamp a number between a minimum and maximum value.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #assert(calc.clamp(5, 0, 10) == 5)
|
|
/// #assert(calc.clamp(5, 6, 10) == 6)
|
|
/// #calc.clamp(5, 0, 4)
|
|
/// ```
|
|
///
|
|
/// Display: Clamp
|
|
/// Category: calculate
|
|
/// Returns: integer or float
|
|
#[func]
|
|
pub fn clamp(
|
|
/// The number to clamp.
|
|
value: Num,
|
|
/// The inclusive minimum value.
|
|
min: Num,
|
|
/// The inclusive maximum value.
|
|
max: Spanned<Num>,
|
|
) -> Value {
|
|
if max.v.float() < min.float() {
|
|
bail!(max.span, "max must be greater than or equal to min")
|
|
}
|
|
value.apply3(min, max.v, i64::clamp, f64::clamp)
|
|
}
|
|
|
|
/// Determine the minimum of a sequence of values.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #calc.min(1, -3, -5, 20, 3, 6) \
|
|
/// #calc.min("typst", "in", "beta")
|
|
/// ```
|
|
///
|
|
/// Display: Minimum
|
|
/// Category: calculate
|
|
/// Returns: any
|
|
#[func]
|
|
pub fn min(
|
|
/// The sequence of values from which to extract the minimum.
|
|
/// Must not be empty.
|
|
#[variadic]
|
|
values: Vec<Spanned<Value>>,
|
|
) -> Value {
|
|
minmax(args.span, values, Ordering::Less)?
|
|
}
|
|
|
|
/// Determine the maximum of a sequence of values.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #calc.max(1, -3, -5, 20, 3, 6) \
|
|
/// #calc.max("typst", "in", "beta")
|
|
/// ```
|
|
///
|
|
/// Display: Maximum
|
|
/// Category: calculate
|
|
/// Returns: any
|
|
#[func]
|
|
pub fn max(
|
|
/// The sequence of values from which to extract the maximum.
|
|
/// Must not be empty.
|
|
#[variadic]
|
|
values: Vec<Spanned<Value>>,
|
|
) -> Value {
|
|
minmax(args.span, values, Ordering::Greater)?
|
|
}
|
|
|
|
/// Find the minimum or maximum of a sequence of values.
|
|
fn minmax(
|
|
span: Span,
|
|
values: Vec<Spanned<Value>>,
|
|
goal: Ordering,
|
|
) -> SourceResult<Value> {
|
|
let mut iter = values.into_iter();
|
|
let Some(Spanned { v: mut extremum, ..}) = iter.next() else {
|
|
bail!(span, "expected at least one value");
|
|
};
|
|
|
|
for Spanned { v, span } in iter {
|
|
match v.partial_cmp(&extremum) {
|
|
Some(ordering) => {
|
|
if ordering == goal {
|
|
extremum = v;
|
|
}
|
|
}
|
|
None => bail!(
|
|
span,
|
|
"cannot compare {} and {}",
|
|
extremum.type_name(),
|
|
v.type_name(),
|
|
),
|
|
}
|
|
}
|
|
|
|
Ok(extremum)
|
|
}
|
|
|
|
/// Determine whether an integer is even.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #calc.even(4) \
|
|
/// #calc.even(5) \
|
|
/// #range(10).filter(calc.even)
|
|
/// ```
|
|
///
|
|
/// Display: Even
|
|
/// Category: calculate
|
|
/// Returns: boolean
|
|
#[func]
|
|
pub fn even(
|
|
/// The number to check for evenness.
|
|
value: i64,
|
|
) -> Value {
|
|
Value::Bool(value % 2 == 0)
|
|
}
|
|
|
|
/// Determine whether an integer is odd.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #calc.odd(4) \
|
|
/// #calc.odd(5) \
|
|
/// #range(10).filter(calc.odd)
|
|
/// ```
|
|
///
|
|
/// Display: Odd
|
|
/// Category: calculate
|
|
/// Returns: boolean
|
|
#[func]
|
|
pub fn odd(
|
|
/// The number to check for oddness.
|
|
value: i64,
|
|
) -> Value {
|
|
Value::Bool(value % 2 != 0)
|
|
}
|
|
|
|
/// Calculate the modulus of two numbers.
|
|
///
|
|
/// ## Example
|
|
/// ```example
|
|
/// #calc.mod(20, 6) \
|
|
/// #calc.mod(1.75, 0.5)
|
|
/// ```
|
|
///
|
|
/// Display: Modulus
|
|
/// Category: calculate
|
|
/// Returns: integer or float
|
|
#[func]
|
|
pub fn mod_(
|
|
/// The dividend of the modulus.
|
|
dividend: Num,
|
|
/// The divisor of the modulus.
|
|
divisor: Spanned<Num>,
|
|
) -> Value {
|
|
if divisor.v.float() == 0.0 {
|
|
bail!(divisor.span, "divisor must not be zero");
|
|
}
|
|
dividend.apply2(divisor.v, Rem::rem, Rem::rem)
|
|
}
|
|
|
|
/// A value which can be passed to functions that work with integers and floats.
|
|
#[derive(Debug, Copy, Clone)]
|
|
enum Num {
|
|
Int(i64),
|
|
Float(f64),
|
|
}
|
|
|
|
impl Num {
|
|
fn apply2(
|
|
self,
|
|
other: Self,
|
|
int: impl FnOnce(i64, i64) -> i64,
|
|
float: impl FnOnce(f64, f64) -> f64,
|
|
) -> Value {
|
|
match (self, other) {
|
|
(Self::Int(a), Self::Int(b)) => Value::Int(int(a, b)),
|
|
(a, b) => Value::Float(float(a.float(), b.float())),
|
|
}
|
|
}
|
|
|
|
fn apply3(
|
|
self,
|
|
other: Self,
|
|
third: Self,
|
|
int: impl FnOnce(i64, i64, i64) -> i64,
|
|
float: impl FnOnce(f64, f64, f64) -> f64,
|
|
) -> Value {
|
|
match (self, other, third) {
|
|
(Self::Int(a), Self::Int(b), Self::Int(c)) => Value::Int(int(a, b, c)),
|
|
(a, b, c) => Value::Float(float(a.float(), b.float(), c.float())),
|
|
}
|
|
}
|
|
|
|
fn float(self) -> f64 {
|
|
match self {
|
|
Self::Int(v) => v as f64,
|
|
Self::Float(v) => v,
|
|
}
|
|
}
|
|
}
|
|
|
|
cast_from_value! {
|
|
Num,
|
|
v: i64 => Self::Int(v),
|
|
v: f64 => Self::Float(v),
|
|
}
|
|
|
|
/// A value that can be passed to a trigonometric function.
|
|
enum AngleLike {
|
|
Int(i64),
|
|
Float(f64),
|
|
Angle(Angle),
|
|
}
|
|
|
|
cast_from_value! {
|
|
AngleLike,
|
|
v: i64 => Self::Int(v),
|
|
v: f64 => Self::Float(v),
|
|
v: Angle => Self::Angle(v),
|
|
}
|