typst/src/layout/stack.rs
2020-10-06 18:27:00 +02:00

370 lines
13 KiB
Rust

//! Arranging boxes into a stack along the main axis.
//!
//! Individual layouts can be aligned at `Start`, `Center` or `End` along both
//! axes. These alignments are with respect to the size of the finished layout
//! and not the total usable size. This means that a later layout can have
//! influence on the position of an earlier one. Consider the following example.
//! ```typst
//! [align: right][A word.]
//! [align: left][A sentence with a couple more words.]
//! ```
//! The resulting layout looks like this:
//! ```text
//! |--------------------------------------|
//! | A word. |
//! | |
//! | A sentence with a couple more words. |
//! |--------------------------------------|
//! ```
//! The position of the first aligned box thus depends on the length of the
//! sentence in the second box.
use super::*;
/// Performs the stack layouting.
pub struct StackLayouter {
/// The context used for stack layouting.
ctx: StackContext,
/// The finished layouts.
layouts: Vec<BoxLayout>,
/// The in-progress space.
pub(super) space: Space,
}
/// The context for stack layouting.
#[derive(Debug, Clone)]
pub struct StackContext {
/// The layouting directions.
pub dirs: Gen2<Dir>,
/// The spaces to layout into.
pub spaces: Vec<LayoutSpace>,
/// Whether to spill over into copies of the last space or finish layouting
/// when the last space is used up.
pub repeat: bool,
}
impl StackLayouter {
/// Create a new stack layouter.
pub fn new(ctx: StackContext) -> Self {
let space = ctx.spaces[0];
Self {
ctx,
layouts: vec![],
space: Space::new(0, true, space.usable()),
}
}
/// Add a layout to the stack.
pub fn add(&mut self, layout: BoxLayout, aligns: Gen2<GenAlign>) {
// If the alignment cannot be fitted in this space, finish it.
//
// TODO: Issue warning for non-fitting alignment in non-repeating
// context.
if aligns.main < self.space.allowed_align && self.ctx.repeat {
self.finish_space(true);
}
// Add a possibly cached soft spacing.
if let LastSpacing::Soft(spacing, _) = self.space.last_spacing {
self.add_spacing(spacing, SpacingKind::Hard);
}
// TODO: Issue warning about overflow if there is overflow in a
// non-repeating context.
if !self.space.usable.fits(layout.size) && self.ctx.repeat {
self.skip_to_fitting_space(layout.size);
}
// Change the usable space and size of the space.
self.update_metrics(layout.size.switch(self.ctx.dirs));
// Add the box to the vector and remember that spacings are allowed
// again.
self.space.layouts.push((layout, aligns));
self.space.allowed_align = aligns.main;
self.space.last_spacing = LastSpacing::None;
}
/// Add spacing to the stack.
pub fn add_spacing(&mut self, mut spacing: f64, kind: SpacingKind) {
match kind {
// A hard space is simply an empty box.
SpacingKind::Hard => {
// Reduce the spacing such that it definitely fits.
let axis = self.ctx.dirs.main.axis();
spacing = spacing.min(self.space.usable.get(axis));
let size = Gen2::new(spacing, 0.0);
self.update_metrics(size);
self.space.layouts.push((
BoxLayout::new(size.switch(self.ctx.dirs).to_size()),
Gen2::default(),
));
self.space.last_spacing = LastSpacing::Hard;
}
// A soft space is cached if it is not consumed by a hard space or
// previous soft space with higher level.
SpacingKind::Soft(level) => {
let consumes = match self.space.last_spacing {
LastSpacing::None => true,
LastSpacing::Soft(_, prev) if level < prev => true,
_ => false,
};
if consumes {
self.space.last_spacing = LastSpacing::Soft(spacing, level);
}
}
}
}
fn update_metrics(&mut self, added: Gen2<f64>) {
let mut size = self.space.size.switch(self.ctx.dirs);
let mut extra = self.space.extra.switch(self.ctx.dirs);
size.cross += (added.cross - extra.cross).max(0.0);
size.main += (added.main - extra.main).max(0.0);
extra.cross = extra.cross.max(added.cross);
extra.main = (extra.main - added.main).max(0.0);
self.space.size = size.switch(self.ctx.dirs).to_size();
self.space.extra = extra.switch(self.ctx.dirs).to_size();
*self.space.usable.get_mut(self.ctx.dirs.main.axis()) -= added.main;
}
/// Update the layouting spaces.
///
/// If `replace_empty` is true, the current space is replaced if there are
/// no boxes laid out into it yet. Otherwise, the followup spaces are
/// replaced.
pub fn set_spaces(&mut self, spaces: Vec<LayoutSpace>, replace_empty: bool) {
if replace_empty && self.space_is_empty() {
self.ctx.spaces = spaces;
self.start_space(0, self.space.hard);
} else {
self.ctx.spaces.truncate(self.space.index + 1);
self.ctx.spaces.extend(spaces);
}
}
/// Move to the first space that can fit the given size or do nothing
/// if no space is capable of that.
pub fn skip_to_fitting_space(&mut self, size: Size) {
let start = self.next_space();
for (index, space) in self.ctx.spaces[start ..].iter().enumerate() {
if space.usable().fits(size) {
self.finish_space(true);
self.start_space(start + index, true);
break;
}
}
}
/// The remaining inner spaces. If something is laid out into these spaces,
/// it will fit into this stack.
pub fn remaining(&self) -> Vec<LayoutSpace> {
let mut spaces = vec![LayoutSpace {
size: self.usable(),
insets: Insets::ZERO,
expansion: Spec2::new(false, false),
}];
for space in &self.ctx.spaces[self.next_space() ..] {
spaces.push(space.inner());
}
spaces
}
/// The remaining usable size.
pub fn usable(&self) -> Size {
self.space.usable
- Gen2::new(self.space.last_spacing.soft_or_zero(), 0.0)
.switch(self.ctx.dirs)
.to_size()
}
/// Whether the current layout space is empty.
pub fn space_is_empty(&self) -> bool {
self.space.size == Size::ZERO && self.space.layouts.is_empty()
}
/// Whether the current layout space is the last in the followup list.
pub fn space_is_last(&self) -> bool {
self.space.index == self.ctx.spaces.len() - 1
}
/// Finish everything up and return the final collection of boxes.
pub fn finish(mut self) -> Vec<BoxLayout> {
if self.space.hard || !self.space_is_empty() {
self.finish_space(false);
}
self.layouts
}
/// Finish active current space and start a new one.
pub fn finish_space(&mut self, hard: bool) {
let dirs = self.ctx.dirs;
// ------------------------------------------------------------------ //
// Step 1: Determine the full size of the space.
// (Mostly done already while collecting the boxes, but here we
// expand if necessary.)
let space = self.ctx.spaces[self.space.index];
let start = space.start();
let padded_size = {
let mut used_size = self.space.size;
let usable = space.usable();
if space.expansion.horizontal {
used_size.width = usable.width;
}
if space.expansion.vertical {
used_size.height = usable.height;
}
used_size
};
let unpadded_size = padded_size - space.insets.size();
let mut layout = BoxLayout::new(unpadded_size);
// ------------------------------------------------------------------ //
// Step 2: Forward pass. Create a bounding box for each layout in which
// it will be aligned. Then, go forwards through the boxes and remove
// what is taken by previous layouts from the following layouts.
let mut bounds = vec![];
let mut bound = Rect {
x0: start.x,
y0: start.y,
x1: start.x + self.space.size.width,
y1: start.y + self.space.size.height,
};
for (layout, _) in &self.space.layouts {
// First, store the bounds calculated so far (which were reduced
// by the predecessors of this layout) as the initial bounding box
// of this layout.
bounds.push(bound);
// Then, reduce the bounding box for the following layouts. This
// layout uses up space from the origin to the end. Thus, it reduces
// the usable space for following layouts at its origin by its
// main-axis extent.
*bound.get_mut(dirs.main.start()) +=
dirs.main.factor() * layout.size.get(dirs.main.axis());
}
// ------------------------------------------------------------------ //
// Step 3: Backward pass. Reduce the bounding boxes from the previous
// layouts by what is taken by the following ones.
let mut main_extent = 0.0;
for (child, bound) in self.space.layouts.iter().zip(&mut bounds).rev() {
let (layout, _) = child;
// Reduce the bounding box of this layout by the following one's
// main-axis extents.
*bound.get_mut(dirs.main.end()) -= dirs.main.factor() * main_extent;
// And then, include this layout's main-axis extent.
main_extent += layout.size.get(dirs.main.axis());
}
// ------------------------------------------------------------------ //
// Step 4: Align each layout in its bounding box and collect everything
// into a single finished layout.
let children = std::mem::take(&mut self.space.layouts);
for ((child, aligns), bound) in children.into_iter().zip(bounds) {
// Align the child in its own bounds.
let local =
bound.size().anchor(dirs, aligns) - child.size.anchor(dirs, aligns);
// Make the local position in the bounds global.
let pos = bound.origin() + local;
layout.push_layout(pos, child);
}
self.layouts.push(layout);
// ------------------------------------------------------------------ //
// Step 5: Start the next space.
self.start_space(self.next_space(), hard)
}
fn start_space(&mut self, index: usize, hard: bool) {
let space = self.ctx.spaces[index];
self.space = Space::new(index, hard, space.usable());
}
fn next_space(&self) -> usize {
(self.space.index + 1).min(self.ctx.spaces.len() - 1)
}
}
/// A layout space composed of subspaces which can have different directions and
/// alignments.
pub(super) struct Space {
/// The index of this space in `ctx.spaces`.
index: usize,
/// Whether to include a layout for this space even if it would be empty.
hard: bool,
/// The so-far accumulated layouts.
layouts: Vec<(BoxLayout, Gen2<GenAlign>)>,
/// The size of this space.
size: Size,
/// The remaining space.
usable: Size,
/// The extra-needed size to affect the size at all.
extra: Size,
/// Which alignments for new boxes are still allowed.
pub(super) allowed_align: GenAlign,
/// The spacing state. This influences how new spacing is handled, e.g. hard
/// spacing may override soft spacing.
last_spacing: LastSpacing,
}
impl Space {
fn new(index: usize, hard: bool, usable: Size) -> Self {
Self {
index,
hard,
layouts: vec![],
size: Size::ZERO,
usable,
extra: Size::ZERO,
allowed_align: GenAlign::Start,
last_spacing: LastSpacing::Hard,
}
}
}
/// The spacing kind of the most recently inserted item in a layouting process.
///
/// Since the last inserted item may not be spacing at all, this can be `None`.
#[derive(Debug, Copy, Clone, PartialEq)]
pub(crate) enum LastSpacing {
/// The last item was hard spacing.
Hard,
/// The last item was soft spacing with the given width and level.
Soft(f64, u32),
/// The last item wasn't spacing.
None,
}
impl LastSpacing {
/// The width of the soft space if this is a soft space or zero otherwise.
fn soft_or_zero(self) -> f64 {
match self {
LastSpacing::Soft(space, _) => space,
_ => 0.0,
}
}
}