1101 lines
37 KiB
Rust

use ecow::{eco_format, EcoString};
use unicode_ident::{is_xid_continue, is_xid_start};
use unicode_script::{Script, UnicodeScript};
use unicode_segmentation::UnicodeSegmentation;
use unscanny::Scanner;
use crate::{SyntaxError, SyntaxKind, SyntaxNode};
/// An iterator over a source code string which returns tokens.
#[derive(Clone)]
pub(super) struct Lexer<'s> {
/// The scanner: contains the underlying string and location as a "cursor".
s: Scanner<'s>,
/// The mode the lexer is in. This determines which kinds of tokens it
/// produces.
mode: LexMode,
/// Whether the last token contained a newline.
newline: bool,
/// An error for the last token.
error: Option<SyntaxError>,
}
/// What kind of tokens to emit.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub(super) enum LexMode {
/// Text and markup.
Markup,
/// Math atoms, operators, etc.
Math,
/// Keywords, literals and operators.
Code,
}
impl<'s> Lexer<'s> {
/// Create a new lexer with the given mode and a prefix to offset column
/// calculations.
pub fn new(text: &'s str, mode: LexMode) -> Self {
Self {
s: Scanner::new(text),
mode,
newline: false,
error: None,
}
}
/// Get the current lexing mode.
pub fn mode(&self) -> LexMode {
self.mode
}
/// Change the lexing mode.
pub fn set_mode(&mut self, mode: LexMode) {
self.mode = mode;
}
/// The index in the string at which the last token ends and next token
/// will start.
pub fn cursor(&self) -> usize {
self.s.cursor()
}
/// Jump to the given index in the string.
pub fn jump(&mut self, index: usize) {
self.s.jump(index);
}
/// Whether the last token contained a newline.
pub fn newline(&self) -> bool {
self.newline
}
/// The number of characters until the most recent newline from an index.
pub fn column(&self, index: usize) -> usize {
let mut s = self.s; // Make a new temporary scanner (cheap).
s.jump(index);
s.before().chars().rev().take_while(|&c| !is_newline(c)).count()
}
}
impl Lexer<'_> {
/// Construct a full-positioned syntax error.
fn error(&mut self, message: impl Into<EcoString>) -> SyntaxKind {
self.error = Some(SyntaxError::new(message));
SyntaxKind::Error
}
/// If the current node is an error, adds a hint.
fn hint(&mut self, message: impl Into<EcoString>) {
if let Some(error) = &mut self.error {
error.hints.push(message.into());
}
}
}
/// Shared methods with all [`LexMode`].
impl Lexer<'_> {
/// Return the next token in our text. Returns both the [`SyntaxNode`]
/// and the raw [`SyntaxKind`] to make it more ergonomic to check the kind
pub fn next(&mut self) -> (SyntaxKind, SyntaxNode) {
debug_assert!(self.error.is_none());
let start = self.s.cursor();
self.newline = false;
let kind = match self.s.eat() {
Some(c) if is_space(c, self.mode) => self.whitespace(start, c),
Some('#') if start == 0 && self.s.eat_if('!') => self.shebang(),
Some('/') if self.s.eat_if('/') => self.line_comment(),
Some('/') if self.s.eat_if('*') => self.block_comment(),
Some('*') if self.s.eat_if('/') => {
let kind = self.error("unexpected end of block comment");
self.hint(
"consider escaping the `*` with a backslash or \
opening the block comment with `/*`",
);
kind
}
Some('`') if self.mode != LexMode::Math => return self.raw(),
Some(c) => match self.mode {
LexMode::Markup => self.markup(start, c),
LexMode::Math => match self.math(start, c) {
(kind, None) => kind,
(kind, Some(node)) => return (kind, node),
},
LexMode::Code => self.code(start, c),
},
None => SyntaxKind::End,
};
let text = self.s.from(start);
let node = match self.error.take() {
Some(error) => SyntaxNode::error(error, text),
None => SyntaxNode::leaf(kind, text),
};
(kind, node)
}
/// Eat whitespace characters greedily.
fn whitespace(&mut self, start: usize, c: char) -> SyntaxKind {
let more = self.s.eat_while(|c| is_space(c, self.mode));
let newlines = match c {
// Optimize eating a single space.
' ' if more.is_empty() => 0,
_ => count_newlines(self.s.from(start)),
};
self.newline = newlines > 0;
if self.mode == LexMode::Markup && newlines >= 2 {
SyntaxKind::Parbreak
} else {
SyntaxKind::Space
}
}
fn shebang(&mut self) -> SyntaxKind {
self.s.eat_until(is_newline);
SyntaxKind::Shebang
}
fn line_comment(&mut self) -> SyntaxKind {
self.s.eat_until(is_newline);
SyntaxKind::LineComment
}
fn block_comment(&mut self) -> SyntaxKind {
let mut state = '_';
let mut depth = 1;
// Find the first `*/` that does not correspond to a nested `/*`.
while let Some(c) = self.s.eat() {
state = match (state, c) {
('*', '/') => {
depth -= 1;
if depth == 0 {
break;
}
'_'
}
('/', '*') => {
depth += 1;
'_'
}
_ => c,
}
}
SyntaxKind::BlockComment
}
}
/// Markup.
impl Lexer<'_> {
fn markup(&mut self, start: usize, c: char) -> SyntaxKind {
match c {
'\\' => self.backslash(),
'h' if self.s.eat_if("ttp://") => self.link(),
'h' if self.s.eat_if("ttps://") => self.link(),
'<' if self.s.at(is_id_continue) => self.label(),
'@' => self.ref_marker(),
'.' if self.s.eat_if("..") => SyntaxKind::Shorthand,
'-' if self.s.eat_if("--") => SyntaxKind::Shorthand,
'-' if self.s.eat_if('-') => SyntaxKind::Shorthand,
'-' if self.s.eat_if('?') => SyntaxKind::Shorthand,
'-' if self.s.at(char::is_numeric) => SyntaxKind::Shorthand,
'*' if !self.in_word() => SyntaxKind::Star,
'_' if !self.in_word() => SyntaxKind::Underscore,
'#' => SyntaxKind::Hash,
'[' => SyntaxKind::LeftBracket,
']' => SyntaxKind::RightBracket,
'\'' => SyntaxKind::SmartQuote,
'"' => SyntaxKind::SmartQuote,
'$' => SyntaxKind::Dollar,
'~' => SyntaxKind::Shorthand,
':' => SyntaxKind::Colon,
'=' => {
self.s.eat_while('=');
if self.space_or_end() {
SyntaxKind::HeadingMarker
} else {
self.text()
}
}
'-' if self.space_or_end() => SyntaxKind::ListMarker,
'+' if self.space_or_end() => SyntaxKind::EnumMarker,
'/' if self.space_or_end() => SyntaxKind::TermMarker,
'0'..='9' => self.numbering(start),
_ => self.text(),
}
}
fn backslash(&mut self) -> SyntaxKind {
if self.s.eat_if("u{") {
let hex = self.s.eat_while(char::is_ascii_alphanumeric);
if !self.s.eat_if('}') {
return self.error("unclosed Unicode escape sequence");
}
if u32::from_str_radix(hex, 16)
.ok()
.and_then(std::char::from_u32)
.is_none()
{
return self.error(eco_format!("invalid Unicode codepoint: {}", hex));
}
return SyntaxKind::Escape;
}
if self.s.done() || self.s.at(char::is_whitespace) {
SyntaxKind::Linebreak
} else {
self.s.eat();
SyntaxKind::Escape
}
}
/// We parse entire raw segments in the lexer as a convenience to avoid
/// going to and from the parser for each raw section. See comments in
/// [`Self::blocky_raw`] and [`Self::inline_raw`] for specific details.
fn raw(&mut self) -> (SyntaxKind, SyntaxNode) {
let start = self.s.cursor() - 1;
// Determine number of opening backticks.
let mut backticks = 1;
while self.s.eat_if('`') {
backticks += 1;
}
// Special case for ``.
if backticks == 2 {
let nodes = vec![
SyntaxNode::leaf(SyntaxKind::RawDelim, "`"),
SyntaxNode::leaf(SyntaxKind::RawDelim, "`"),
];
return (SyntaxKind::Raw, SyntaxNode::inner(SyntaxKind::Raw, nodes));
}
// Find end of raw text.
let mut found = 0;
while found < backticks {
match self.s.eat() {
Some('`') => found += 1,
Some(_) => found = 0,
None => {
let msg = SyntaxError::new("unclosed raw text");
let error = SyntaxNode::error(msg, self.s.from(start));
return (SyntaxKind::Error, error);
}
}
}
let end = self.s.cursor();
let mut nodes = Vec::with_capacity(3); // Will have at least 3.
// A closure for pushing a node onto our raw vector. Assumes the caller
// will move the scanner to the next location at each step.
let mut prev_start = start;
let mut push_raw = |kind, s: &Scanner| {
nodes.push(SyntaxNode::leaf(kind, s.from(prev_start)));
prev_start = s.cursor();
};
// Opening delimiter.
self.s.jump(start + backticks);
push_raw(SyntaxKind::RawDelim, &self.s);
if backticks >= 3 {
self.blocky_raw(end - backticks, &mut push_raw);
} else {
self.inline_raw(end - backticks, &mut push_raw);
}
// Closing delimiter.
self.s.jump(end);
push_raw(SyntaxKind::RawDelim, &self.s);
(SyntaxKind::Raw, SyntaxNode::inner(SyntaxKind::Raw, nodes))
}
/// Raw blocks parse a language tag, have smart behavior for trimming
/// whitespace in the start/end lines, and trim common leading whitespace
/// from all other lines as the "dedent". The exact behavior is described
/// below.
///
/// ### The initial line:
/// - A valid Typst identifier immediately following the opening delimiter
/// is parsed as the language tag.
/// - We check the rest of the line and if all characters are whitespace,
/// trim it. Otherwise we trim a single leading space if present.
/// - If more trimmed characters follow on future lines, they will be
/// merged into the same trimmed element.
/// - If we didn't trim the entire line, the rest is kept as text.
///
/// ### Inner lines:
/// - We determine the "dedent" by iterating over the lines. The dedent is
/// the minimum number of leading whitespace characters (not bytes) before
/// each line that has any non-whitespace characters.
/// - The opening delimiter's line does not contribute to the dedent, but
/// the closing delimiter's line does (even if that line is entirely
/// whitespace up to the delimiter).
/// - We then trim the newline and dedent characters of each line, and add a
/// (potentially empty) text element of all remaining characters.
///
/// ### The final line:
/// - If the last line is entirely whitespace, it is trimmed.
/// - Otherwise its text is kept like an inner line. However, if the last
/// non-whitespace character of the final line is a backtick, then one
/// ascii space (if present) is trimmed from the end.
fn blocky_raw<F>(&mut self, inner_end: usize, mut push_raw: F)
where
F: FnMut(SyntaxKind, &Scanner),
{
// Language tag.
if self.s.eat_if(is_id_start) {
self.s.eat_while(is_id_continue);
push_raw(SyntaxKind::RawLang, &self.s);
}
// The rest of the function operates on the lines between the backticks.
let mut lines = split_newlines(self.s.to(inner_end));
// Determine dedent level.
let dedent = lines
.iter()
.skip(1)
.filter(|line| !line.chars().all(char::is_whitespace))
// The line with the closing ``` is always taken into account
.chain(lines.last())
.map(|line| line.chars().take_while(|c| c.is_whitespace()).count())
.min()
.unwrap_or(0);
// Trim whitespace from the last line. Will be added as a `RawTrimmed`
// kind by the check for `self.s.cursor() != inner_end` below.
if lines.last().is_some_and(|last| last.chars().all(char::is_whitespace)) {
lines.pop();
} else if let Some(last) = lines.last_mut() {
// If last line ends in a backtick, try to trim a single space. This
// check must happen before we add the first line since the last and
// first lines might be the same.
if last.trim_end().ends_with('`') {
*last = last.strip_suffix(' ').unwrap_or(last);
}
}
let mut lines = lines.into_iter();
// Handle the first line: trim if all whitespace, or trim a single space
// at the start. Note that the first line does not affect the dedent
// value.
if let Some(first_line) = lines.next() {
if first_line.chars().all(char::is_whitespace) {
self.s.advance(first_line.len());
// This is the only spot we advance the scanner, but don't
// immediately call `push_raw`. But the rest of the function
// ensures we will always add this text to a `RawTrimmed` later.
debug_assert!(self.s.cursor() != inner_end);
// A proof by cases follows:
// # First case: The loop runs
// If the loop runs, there must be a newline following, so
// `cursor != inner_end`. And if the loop runs, the first thing
// it does is add a trimmed element.
// # Second case: The final if-statement runs.
// To _not_ reach the loop from here, we must have only one or
// two lines:
// 1. If one line, we cannot be here, because the first and last
// lines are the same, so this line will have been removed by
// the check for the last line being all whitespace.
// 2. If two lines, the loop will run unless the last is fully
// whitespace, but if it is, it will have been popped, then
// the final if-statement will run because the text removed
// by the last line must include at least a newline, so
// `cursor != inner_end` here.
} else {
let line_end = self.s.cursor() + first_line.len();
if self.s.eat_if(' ') {
// Trim a single space after the lang tag on the first line.
push_raw(SyntaxKind::RawTrimmed, &self.s);
}
// We know here that the rest of the line is non-empty.
self.s.jump(line_end);
push_raw(SyntaxKind::Text, &self.s);
}
}
// Add lines.
for line in lines {
let offset: usize = line.chars().take(dedent).map(char::len_utf8).sum();
self.s.eat_newline();
self.s.advance(offset);
push_raw(SyntaxKind::RawTrimmed, &self.s);
self.s.advance(line.len() - offset);
push_raw(SyntaxKind::Text, &self.s);
}
// Add final trimmed.
if self.s.cursor() < inner_end {
self.s.jump(inner_end);
push_raw(SyntaxKind::RawTrimmed, &self.s);
}
}
/// Inline raw text is split on lines with non-newlines as `Text` kinds and
/// newlines as `RawTrimmed`. Inline raw text does not dedent the text, all
/// non-newline whitespace is kept.
fn inline_raw<F>(&mut self, inner_end: usize, mut push_raw: F)
where
F: FnMut(SyntaxKind, &Scanner),
{
while self.s.cursor() < inner_end {
if self.s.at(is_newline) {
push_raw(SyntaxKind::Text, &self.s);
self.s.eat_newline();
push_raw(SyntaxKind::RawTrimmed, &self.s);
continue;
}
self.s.eat();
}
push_raw(SyntaxKind::Text, &self.s);
}
fn link(&mut self) -> SyntaxKind {
let (link, balanced) = link_prefix(self.s.after());
self.s.advance(link.len());
if !balanced {
return self.error(
"automatic links cannot contain unbalanced brackets, \
use the `link` function instead",
);
}
SyntaxKind::Link
}
fn numbering(&mut self, start: usize) -> SyntaxKind {
self.s.eat_while(char::is_ascii_digit);
let read = self.s.from(start);
if self.s.eat_if('.') && self.space_or_end() && read.parse::<u64>().is_ok() {
return SyntaxKind::EnumMarker;
}
self.text()
}
fn ref_marker(&mut self) -> SyntaxKind {
self.s.eat_while(is_valid_in_label_literal);
// Don't include the trailing characters likely to be part of text.
while matches!(self.s.scout(-1), Some('.' | ':')) {
self.s.uneat();
}
SyntaxKind::RefMarker
}
fn label(&mut self) -> SyntaxKind {
let label = self.s.eat_while(is_valid_in_label_literal);
if label.is_empty() {
return self.error("label cannot be empty");
}
if !self.s.eat_if('>') {
return self.error("unclosed label");
}
SyntaxKind::Label
}
fn text(&mut self) -> SyntaxKind {
macro_rules! table {
($(|$c:literal)*) => {
static TABLE: [bool; 128] = {
let mut t = [false; 128];
$(t[$c as usize] = true;)*
t
};
};
}
table! {
| ' ' | '\t' | '\n' | '\x0b' | '\x0c' | '\r' | '\\' | '/'
| '[' | ']' | '~' | '-' | '.' | '\'' | '"' | '*' | '_'
| ':' | 'h' | '`' | '$' | '<' | '>' | '@' | '#'
};
loop {
self.s.eat_until(|c: char| {
TABLE.get(c as usize).copied().unwrap_or_else(|| c.is_whitespace())
});
// Continue with the same text node if the thing would become text
// anyway.
let mut s = self.s;
match s.eat() {
Some(' ') if s.at(char::is_alphanumeric) => {}
Some('/') if !s.at(['/', '*']) => {}
Some('-') if !s.at(['-', '?']) => {}
Some('.') if !s.at("..") => {}
Some('h') if !s.at("ttp://") && !s.at("ttps://") => {}
Some('@') if !s.at(is_valid_in_label_literal) => {}
_ => break,
}
self.s = s;
}
SyntaxKind::Text
}
fn in_word(&self) -> bool {
let wordy = |c: Option<char>| {
c.is_some_and(|c| {
c.is_alphanumeric()
&& !matches!(
c.script(),
Script::Han
| Script::Hiragana
| Script::Katakana
| Script::Hangul
)
})
};
let prev = self.s.scout(-2);
let next = self.s.peek();
wordy(prev) && wordy(next)
}
fn space_or_end(&self) -> bool {
self.s.done()
|| self.s.at(char::is_whitespace)
|| self.s.at("//")
|| self.s.at("/*")
}
}
/// Math.
impl Lexer<'_> {
fn math(&mut self, start: usize, c: char) -> (SyntaxKind, Option<SyntaxNode>) {
let kind = match c {
'\\' => self.backslash(),
'"' => self.string(),
'-' if self.s.eat_if(">>") => SyntaxKind::MathShorthand,
'-' if self.s.eat_if('>') => SyntaxKind::MathShorthand,
'-' if self.s.eat_if("->") => SyntaxKind::MathShorthand,
':' if self.s.eat_if('=') => SyntaxKind::MathShorthand,
':' if self.s.eat_if(":=") => SyntaxKind::MathShorthand,
'!' if self.s.eat_if('=') => SyntaxKind::MathShorthand,
'.' if self.s.eat_if("..") => SyntaxKind::MathShorthand,
'[' if self.s.eat_if('|') => SyntaxKind::MathShorthand,
'<' if self.s.eat_if("==>") => SyntaxKind::MathShorthand,
'<' if self.s.eat_if("-->") => SyntaxKind::MathShorthand,
'<' if self.s.eat_if("--") => SyntaxKind::MathShorthand,
'<' if self.s.eat_if("-<") => SyntaxKind::MathShorthand,
'<' if self.s.eat_if("->") => SyntaxKind::MathShorthand,
'<' if self.s.eat_if("<-") => SyntaxKind::MathShorthand,
'<' if self.s.eat_if("<<") => SyntaxKind::MathShorthand,
'<' if self.s.eat_if("=>") => SyntaxKind::MathShorthand,
'<' if self.s.eat_if("==") => SyntaxKind::MathShorthand,
'<' if self.s.eat_if("~~") => SyntaxKind::MathShorthand,
'<' if self.s.eat_if('=') => SyntaxKind::MathShorthand,
'<' if self.s.eat_if('<') => SyntaxKind::MathShorthand,
'<' if self.s.eat_if('-') => SyntaxKind::MathShorthand,
'<' if self.s.eat_if('~') => SyntaxKind::MathShorthand,
'>' if self.s.eat_if("->") => SyntaxKind::MathShorthand,
'>' if self.s.eat_if(">>") => SyntaxKind::MathShorthand,
'=' if self.s.eat_if("=>") => SyntaxKind::MathShorthand,
'=' if self.s.eat_if('>') => SyntaxKind::MathShorthand,
'=' if self.s.eat_if(':') => SyntaxKind::MathShorthand,
'>' if self.s.eat_if('=') => SyntaxKind::MathShorthand,
'>' if self.s.eat_if('>') => SyntaxKind::MathShorthand,
'|' if self.s.eat_if("->") => SyntaxKind::MathShorthand,
'|' if self.s.eat_if("=>") => SyntaxKind::MathShorthand,
'|' if self.s.eat_if(']') => SyntaxKind::MathShorthand,
'|' if self.s.eat_if('|') => SyntaxKind::MathShorthand,
'~' if self.s.eat_if("~>") => SyntaxKind::MathShorthand,
'~' if self.s.eat_if('>') => SyntaxKind::MathShorthand,
'*' | '-' | '~' => SyntaxKind::MathShorthand,
'.' => SyntaxKind::Dot,
',' => SyntaxKind::Comma,
';' => SyntaxKind::Semicolon,
')' => SyntaxKind::RightParen,
'#' => SyntaxKind::Hash,
'_' => SyntaxKind::Underscore,
'$' => SyntaxKind::Dollar,
'/' => SyntaxKind::Slash,
'^' => SyntaxKind::Hat,
'\'' => SyntaxKind::Prime,
'&' => SyntaxKind::MathAlignPoint,
'√' | '∛' | '∜' => SyntaxKind::Root,
// Identifiers.
c if is_math_id_start(c) && self.s.at(is_math_id_continue) => {
self.s.eat_while(is_math_id_continue);
let (kind, node) = self.math_ident_or_field(start);
return (kind, Some(node));
}
// Other math atoms.
_ => self.math_text(start, c),
};
(kind, None)
}
/// Parse a single `MathIdent` or an entire `FieldAccess`.
fn math_ident_or_field(&mut self, start: usize) -> (SyntaxKind, SyntaxNode) {
let mut kind = SyntaxKind::MathIdent;
let mut node = SyntaxNode::leaf(kind, self.s.from(start));
while let Some(ident) = self.maybe_dot_ident() {
kind = SyntaxKind::FieldAccess;
let field_children = vec![
node,
SyntaxNode::leaf(SyntaxKind::Dot, '.'),
SyntaxNode::leaf(SyntaxKind::Ident, ident),
];
node = SyntaxNode::inner(kind, field_children);
}
(kind, node)
}
/// If at a dot and a math identifier, eat and return the identifier.
fn maybe_dot_ident(&mut self) -> Option<&str> {
if self.s.scout(1).is_some_and(is_math_id_start) && self.s.eat_if('.') {
let ident_start = self.s.cursor();
self.s.eat();
self.s.eat_while(is_math_id_continue);
Some(self.s.from(ident_start))
} else {
None
}
}
fn math_text(&mut self, start: usize, c: char) -> SyntaxKind {
// Keep numbers and grapheme clusters together.
if c.is_numeric() {
self.s.eat_while(char::is_numeric);
let mut s = self.s;
if s.eat_if('.') && !s.eat_while(char::is_numeric).is_empty() {
self.s = s;
}
SyntaxKind::MathText
} else {
let len = self
.s
.get(start..self.s.string().len())
.graphemes(true)
.next()
.map_or(0, str::len);
self.s.jump(start + len);
if len > c.len_utf8() {
// Grapheme clusters are treated as normal text and stay grouped
// This may need to change in the future.
SyntaxKind::Text
} else {
SyntaxKind::MathText
}
}
}
/// Handle named arguments in math function call.
pub fn maybe_math_named_arg(&mut self, start: usize) -> Option<SyntaxNode> {
let cursor = self.s.cursor();
self.s.jump(start);
if self.s.eat_if(is_id_start) {
self.s.eat_while(is_id_continue);
// Check that a colon directly follows the identifier, and not the
// `:=` or `::=` math shorthands.
if self.s.at(':') && !self.s.at(":=") && !self.s.at("::=") {
// Check that the identifier is not just `_`.
let node = if self.s.from(start) != "_" {
SyntaxNode::leaf(SyntaxKind::Ident, self.s.from(start))
} else {
let msg = SyntaxError::new("expected identifier, found underscore");
SyntaxNode::error(msg, self.s.from(start))
};
return Some(node);
}
}
self.s.jump(cursor);
None
}
/// Handle spread arguments in math function call.
pub fn maybe_math_spread_arg(&mut self, start: usize) -> Option<SyntaxNode> {
let cursor = self.s.cursor();
self.s.jump(start);
if self.s.eat_if("..") {
// Check that neither a space nor a dot follows the spread syntax.
// A dot would clash with the `...` math shorthand.
if !self.space_or_end() && !self.s.at('.') {
let node = SyntaxNode::leaf(SyntaxKind::Dots, self.s.from(start));
return Some(node);
}
}
self.s.jump(cursor);
None
}
}
/// Code.
impl Lexer<'_> {
fn code(&mut self, start: usize, c: char) -> SyntaxKind {
match c {
'<' if self.s.at(is_id_continue) => self.label(),
'0'..='9' => self.number(start, c),
'.' if self.s.at(char::is_ascii_digit) => self.number(start, c),
'"' => self.string(),
'=' if self.s.eat_if('=') => SyntaxKind::EqEq,
'!' if self.s.eat_if('=') => SyntaxKind::ExclEq,
'<' if self.s.eat_if('=') => SyntaxKind::LtEq,
'>' if self.s.eat_if('=') => SyntaxKind::GtEq,
'+' if self.s.eat_if('=') => SyntaxKind::PlusEq,
'-' | '\u{2212}' if self.s.eat_if('=') => SyntaxKind::HyphEq,
'*' if self.s.eat_if('=') => SyntaxKind::StarEq,
'/' if self.s.eat_if('=') => SyntaxKind::SlashEq,
'.' if self.s.eat_if('.') => SyntaxKind::Dots,
'=' if self.s.eat_if('>') => SyntaxKind::Arrow,
'{' => SyntaxKind::LeftBrace,
'}' => SyntaxKind::RightBrace,
'[' => SyntaxKind::LeftBracket,
']' => SyntaxKind::RightBracket,
'(' => SyntaxKind::LeftParen,
')' => SyntaxKind::RightParen,
'$' => SyntaxKind::Dollar,
',' => SyntaxKind::Comma,
';' => SyntaxKind::Semicolon,
':' => SyntaxKind::Colon,
'.' => SyntaxKind::Dot,
'+' => SyntaxKind::Plus,
'-' | '\u{2212}' => SyntaxKind::Minus,
'*' => SyntaxKind::Star,
'/' => SyntaxKind::Slash,
'=' => SyntaxKind::Eq,
'<' => SyntaxKind::Lt,
'>' => SyntaxKind::Gt,
c if is_id_start(c) => self.ident(start),
c => self.error(eco_format!("the character `{c}` is not valid in code")),
}
}
fn ident(&mut self, start: usize) -> SyntaxKind {
self.s.eat_while(is_id_continue);
let ident = self.s.from(start);
let prev = self.s.get(0..start);
if !prev.ends_with(['.', '@']) || prev.ends_with("..") {
if let Some(keyword) = keyword(ident) {
return keyword;
}
}
if ident == "_" {
SyntaxKind::Underscore
} else {
SyntaxKind::Ident
}
}
fn number(&mut self, mut start: usize, c: char) -> SyntaxKind {
// Handle alternative integer bases.
let mut base = 10;
if c == '0' {
if self.s.eat_if('b') {
base = 2;
} else if self.s.eat_if('o') {
base = 8;
} else if self.s.eat_if('x') {
base = 16;
}
if base != 10 {
start = self.s.cursor();
}
}
// Read the first part (integer or fractional depending on `first`).
self.s.eat_while(if base == 16 {
char::is_ascii_alphanumeric
} else {
char::is_ascii_digit
});
// Read the fractional part if not already done.
// Make sure not to confuse a range for the decimal separator.
if c != '.'
&& !self.s.at("..")
&& !self.s.scout(1).is_some_and(is_id_start)
&& self.s.eat_if('.')
&& base == 10
{
self.s.eat_while(char::is_ascii_digit);
}
// Read the exponent.
if !self.s.at("em") && self.s.eat_if(['e', 'E']) && base == 10 {
self.s.eat_if(['+', '-']);
self.s.eat_while(char::is_ascii_digit);
}
// Read the suffix.
let suffix_start = self.s.cursor();
if !self.s.eat_if('%') {
self.s.eat_while(char::is_ascii_alphanumeric);
}
let number = self.s.get(start..suffix_start);
let suffix = self.s.from(suffix_start);
let kind = if i64::from_str_radix(number, base).is_ok() {
SyntaxKind::Int
} else if base == 10 && number.parse::<f64>().is_ok() {
SyntaxKind::Float
} else {
return self.error(match base {
2 => eco_format!("invalid binary number: 0b{}", number),
8 => eco_format!("invalid octal number: 0o{}", number),
16 => eco_format!("invalid hexadecimal number: 0x{}", number),
_ => eco_format!("invalid number: {}", number),
});
};
if suffix.is_empty() {
return kind;
}
if !matches!(
suffix,
"pt" | "mm" | "cm" | "in" | "deg" | "rad" | "em" | "fr" | "%"
) {
return self.error(eco_format!("invalid number suffix: {}", suffix));
}
if base != 10 {
let kind = self.error(eco_format!("invalid base-{base} prefix"));
self.hint("numbers with a unit cannot have a base prefix");
return kind;
}
SyntaxKind::Numeric
}
fn string(&mut self) -> SyntaxKind {
let mut escaped = false;
self.s.eat_until(|c| {
let stop = c == '"' && !escaped;
escaped = c == '\\' && !escaped;
stop
});
if !self.s.eat_if('"') {
return self.error("unclosed string");
}
SyntaxKind::Str
}
}
/// Try to parse an identifier into a keyword.
fn keyword(ident: &str) -> Option<SyntaxKind> {
Some(match ident {
"none" => SyntaxKind::None,
"auto" => SyntaxKind::Auto,
"true" => SyntaxKind::Bool,
"false" => SyntaxKind::Bool,
"not" => SyntaxKind::Not,
"and" => SyntaxKind::And,
"or" => SyntaxKind::Or,
"let" => SyntaxKind::Let,
"set" => SyntaxKind::Set,
"show" => SyntaxKind::Show,
"context" => SyntaxKind::Context,
"if" => SyntaxKind::If,
"else" => SyntaxKind::Else,
"for" => SyntaxKind::For,
"in" => SyntaxKind::In,
"while" => SyntaxKind::While,
"break" => SyntaxKind::Break,
"continue" => SyntaxKind::Continue,
"return" => SyntaxKind::Return,
"import" => SyntaxKind::Import,
"include" => SyntaxKind::Include,
"as" => SyntaxKind::As,
_ => return None,
})
}
trait ScannerExt {
fn advance(&mut self, by: usize);
fn eat_newline(&mut self) -> bool;
}
impl ScannerExt for Scanner<'_> {
fn advance(&mut self, by: usize) {
self.jump(self.cursor() + by);
}
fn eat_newline(&mut self) -> bool {
let ate = self.eat_if(is_newline);
if ate && self.before().ends_with('\r') {
self.eat_if('\n');
}
ate
}
}
/// Whether a character will become a [`SyntaxKind::Space`] token.
#[inline]
fn is_space(character: char, mode: LexMode) -> bool {
match mode {
LexMode::Markup => matches!(character, ' ' | '\t') || is_newline(character),
_ => character.is_whitespace(),
}
}
/// Whether a character is interpreted as a newline by Typst.
#[inline]
pub fn is_newline(character: char) -> bool {
matches!(
character,
// Line Feed, Vertical Tab, Form Feed, Carriage Return.
'\n' | '\x0B' | '\x0C' | '\r' |
// Next Line, Line Separator, Paragraph Separator.
'\u{0085}' | '\u{2028}' | '\u{2029}'
)
}
/// Extracts a prefix of the text that is a link and also returns whether the
/// parentheses and brackets in the link were balanced.
pub fn link_prefix(text: &str) -> (&str, bool) {
let mut s = unscanny::Scanner::new(text);
let mut brackets = Vec::new();
#[rustfmt::skip]
s.eat_while(|c: char| {
match c {
| '0' ..= '9'
| 'a' ..= 'z'
| 'A' ..= 'Z'
| '!' | '#' | '$' | '%' | '&' | '*' | '+'
| ',' | '-' | '.' | '/' | ':' | ';' | '='
| '?' | '@' | '_' | '~' | '\'' => true,
'[' => {
brackets.push(b'[');
true
}
'(' => {
brackets.push(b'(');
true
}
']' => brackets.pop() == Some(b'['),
')' => brackets.pop() == Some(b'('),
_ => false,
}
});
// Don't include the trailing characters likely to be part of text.
while matches!(s.scout(-1), Some('!' | ',' | '.' | ':' | ';' | '?' | '\'')) {
s.uneat();
}
(s.before(), brackets.is_empty())
}
/// Split text at newlines. These newline characters are not kept.
pub fn split_newlines(text: &str) -> Vec<&str> {
let mut s = Scanner::new(text);
let mut lines = Vec::new();
let mut start = 0;
let mut end = 0;
while let Some(c) = s.eat() {
if is_newline(c) {
if c == '\r' {
s.eat_if('\n');
}
lines.push(&text[start..end]);
start = s.cursor();
}
end = s.cursor();
}
lines.push(&text[start..]);
lines
}
/// Count the number of newlines in text.
fn count_newlines(text: &str) -> usize {
let mut newlines = 0;
let mut s = Scanner::new(text);
while let Some(c) = s.eat() {
if is_newline(c) {
if c == '\r' {
s.eat_if('\n');
}
newlines += 1;
}
}
newlines
}
/// Whether a string is a valid Typst identifier.
///
/// In addition to what is specified in the [Unicode Standard][uax31], we allow:
/// - `_` as a starting character,
/// - `_` and `-` as continuing characters.
///
/// [uax31]: http://www.unicode.org/reports/tr31/
#[inline]
pub fn is_ident(string: &str) -> bool {
let mut chars = string.chars();
chars
.next()
.is_some_and(|c| is_id_start(c) && chars.all(is_id_continue))
}
/// Whether a character can start an identifier.
#[inline]
pub fn is_id_start(c: char) -> bool {
is_xid_start(c) || c == '_'
}
/// Whether a character can continue an identifier.
#[inline]
pub fn is_id_continue(c: char) -> bool {
is_xid_continue(c) || c == '_' || c == '-'
}
/// Whether a character can start an identifier in math.
#[inline]
fn is_math_id_start(c: char) -> bool {
is_xid_start(c)
}
/// Whether a character can continue an identifier in math.
#[inline]
fn is_math_id_continue(c: char) -> bool {
is_xid_continue(c) && c != '_'
}
/// Whether a character can be part of a label literal's name.
#[inline]
fn is_valid_in_label_literal(c: char) -> bool {
is_id_continue(c) || matches!(c, ':' | '.')
}
/// Returns true if this string is valid in a label literal.
pub fn is_valid_label_literal_id(id: &str) -> bool {
!id.is_empty() && id.chars().all(is_valid_in_label_literal)
}