typst/src/eval/mod.rs
2022-02-22 12:42:02 +01:00

808 lines
24 KiB
Rust

//! Evaluation of markup into modules.
#[macro_use]
mod array;
#[macro_use]
mod dict;
#[macro_use]
mod value;
#[macro_use]
mod styles;
mod capture;
mod class;
mod collapse;
mod func;
mod layout;
mod ops;
mod scope;
mod show;
mod template;
pub use array::*;
pub use capture::*;
pub use class::*;
pub use collapse::*;
pub use dict::*;
pub use func::*;
pub use layout::*;
pub use scope::*;
pub use show::*;
pub use styles::*;
pub use template::*;
pub use value::*;
use std::io;
use std::mem;
use unicode_segmentation::UnicodeSegmentation;
use crate::diag::{At, Error, StrResult, Trace, Tracepoint, TypResult};
use crate::geom::{Angle, Fractional, Length, Relative};
use crate::library;
use crate::syntax::ast::*;
use crate::syntax::{Span, Spanned};
use crate::util::EcoString;
use crate::Vm;
/// An evaluated module, ready for importing or conversion to a root layout
/// tree.
#[derive(Debug, Clone)]
pub struct Module {
/// The top-level definitions that were bound in this module.
pub scope: Scope,
/// The module's layoutable contents.
pub template: Template,
}
/// Evaluate an expression.
pub trait Eval {
/// The output of evaluating the expression.
type Output;
/// Evaluate the expression to the output value.
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output>;
}
impl Eval for Markup {
type Output = Template;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
eval_markup(vm, &mut self.nodes())
}
}
/// Evaluate a stream of markup nodes.
fn eval_markup(
vm: &mut Vm,
nodes: &mut impl Iterator<Item = MarkupNode>,
) -> TypResult<Template> {
let mut seq = Vec::with_capacity(nodes.size_hint().1.unwrap_or_default());
while let Some(node) = nodes.next() {
seq.push(match node {
MarkupNode::Expr(Expr::Set(set)) => {
let styles = set.eval(vm)?;
eval_markup(vm, nodes)?.styled_with_map(styles)
}
MarkupNode::Expr(Expr::Show(show)) => {
let styles = show.eval(vm)?;
eval_markup(vm, nodes)?.styled_with_map(styles)
}
MarkupNode::Expr(Expr::Wrap(wrap)) => {
let tail = eval_markup(vm, nodes)?;
vm.scopes.top.def_mut(wrap.binding().take(), tail);
wrap.body().eval(vm)?.display()
}
_ => node.eval(vm)?,
});
}
Ok(Template::sequence(seq))
}
impl Eval for MarkupNode {
type Output = Template;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
Ok(match self {
Self::Space => Template::Space,
Self::Linebreak => Template::Linebreak,
Self::Parbreak => Template::Parbreak,
Self::Text(text) => Template::Text(text.clone()),
Self::Strong(strong) => strong.eval(vm)?,
Self::Emph(emph) => emph.eval(vm)?,
Self::Raw(raw) => raw.eval(vm)?,
Self::Math(math) => math.eval(vm)?,
Self::Heading(heading) => heading.eval(vm)?,
Self::List(list) => list.eval(vm)?,
Self::Enum(enum_) => enum_.eval(vm)?,
Self::Expr(expr) => expr.eval(vm)?.display(),
})
}
}
impl Eval for StrongNode {
type Output = Template;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
Ok(Template::show(library::StrongNode(self.body().eval(vm)?)))
}
}
impl Eval for EmphNode {
type Output = Template;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
Ok(Template::show(library::EmphNode(self.body().eval(vm)?)))
}
}
impl Eval for RawNode {
type Output = Template;
fn eval(&self, _: &mut Vm) -> TypResult<Self::Output> {
let template = Template::show(library::RawNode {
text: self.text.clone(),
block: self.block,
});
Ok(match self.lang {
Some(_) => template.styled(library::RawNode::LANG, self.lang.clone()),
None => template,
})
}
}
impl Eval for MathNode {
type Output = Template;
fn eval(&self, _: &mut Vm) -> TypResult<Self::Output> {
Ok(Template::show(library::MathNode {
formula: self.formula.clone(),
display: self.display,
}))
}
}
impl Eval for HeadingNode {
type Output = Template;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
Ok(Template::show(library::HeadingNode {
body: self.body().eval(vm)?,
level: self.level(),
}))
}
}
impl Eval for ListNode {
type Output = Template;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
Ok(Template::List(library::ListItem {
number: None,
body: Box::new(self.body().eval(vm)?),
}))
}
}
impl Eval for EnumNode {
type Output = Template;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
Ok(Template::Enum(library::ListItem {
number: self.number(),
body: Box::new(self.body().eval(vm)?),
}))
}
}
impl Eval for Expr {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
match self {
Self::Lit(v) => v.eval(vm),
Self::Ident(v) => v.eval(vm),
Self::Array(v) => v.eval(vm).map(Value::Array),
Self::Dict(v) => v.eval(vm).map(Value::Dict),
Self::Template(v) => v.eval(vm).map(Value::Template),
Self::Group(v) => v.eval(vm),
Self::Block(v) => v.eval(vm),
Self::Call(v) => v.eval(vm),
Self::Closure(v) => v.eval(vm),
Self::With(v) => v.eval(vm),
Self::Unary(v) => v.eval(vm),
Self::Binary(v) => v.eval(vm),
Self::Let(v) => v.eval(vm),
Self::Set(_) | Self::Show(_) | Self::Wrap(_) => {
Err("set, show and wrap are only allowed directly in markup")
.at(self.span())
}
Self::If(v) => v.eval(vm),
Self::While(v) => v.eval(vm),
Self::For(v) => v.eval(vm),
Self::Import(v) => v.eval(vm),
Self::Include(v) => v.eval(vm),
Self::Break(v) => v.eval(vm),
Self::Continue(v) => v.eval(vm),
Self::Return(v) => v.eval(vm),
}
}
}
impl Eval for Lit {
type Output = Value;
fn eval(&self, _: &mut Vm) -> TypResult<Self::Output> {
Ok(match self.kind() {
LitKind::None => Value::None,
LitKind::Auto => Value::Auto,
LitKind::Bool(v) => Value::Bool(v),
LitKind::Int(v) => Value::Int(v),
LitKind::Float(v) => Value::Float(v),
LitKind::Length(v, unit) => Value::Length(Length::with_unit(v, unit)),
LitKind::Angle(v, unit) => Value::Angle(Angle::with_unit(v, unit)),
LitKind::Percent(v) => Value::Relative(Relative::new(v / 100.0)),
LitKind::Fractional(v) => Value::Fractional(Fractional::new(v)),
LitKind::Str(ref v) => Value::Str(v.clone()),
})
}
}
impl Eval for Ident {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
match vm.scopes.get(self) {
Some(slot) => Ok(slot.read().unwrap().clone()),
None => bail!(self.span(), "unknown variable"),
}
}
}
impl Eval for ArrayExpr {
type Output = Array;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
self.items().map(|expr| expr.eval(vm)).collect()
}
}
impl Eval for DictExpr {
type Output = Dict;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
self.items()
.map(|x| Ok((x.name().take(), x.expr().eval(vm)?)))
.collect()
}
}
impl Eval for TemplateExpr {
type Output = Template;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
vm.scopes.enter();
let template = self.body().eval(vm)?;
vm.scopes.exit();
Ok(template)
}
}
impl Eval for GroupExpr {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
self.expr().eval(vm)
}
}
impl Eval for BlockExpr {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
vm.scopes.enter();
let mut output = Value::None;
for expr in self.exprs() {
let value = expr.eval(vm)?;
output = ops::join(output, value).at(expr.span())?;
}
vm.scopes.exit();
Ok(output)
}
}
impl Eval for UnaryExpr {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
let value = self.expr().eval(vm)?;
let result = match self.op() {
UnOp::Pos => ops::pos(value),
UnOp::Neg => ops::neg(value),
UnOp::Not => ops::not(value),
};
result.at(self.span())
}
}
impl Eval for BinaryExpr {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
match self.op() {
BinOp::Add => self.apply(vm, ops::add),
BinOp::Sub => self.apply(vm, ops::sub),
BinOp::Mul => self.apply(vm, ops::mul),
BinOp::Div => self.apply(vm, ops::div),
BinOp::And => self.apply(vm, ops::and),
BinOp::Or => self.apply(vm, ops::or),
BinOp::Eq => self.apply(vm, ops::eq),
BinOp::Neq => self.apply(vm, ops::neq),
BinOp::Lt => self.apply(vm, ops::lt),
BinOp::Leq => self.apply(vm, ops::leq),
BinOp::Gt => self.apply(vm, ops::gt),
BinOp::Geq => self.apply(vm, ops::geq),
BinOp::Assign => self.assign(vm, |_, b| Ok(b)),
BinOp::AddAssign => self.assign(vm, ops::add),
BinOp::SubAssign => self.assign(vm, ops::sub),
BinOp::MulAssign => self.assign(vm, ops::mul),
BinOp::DivAssign => self.assign(vm, ops::div),
}
}
}
impl BinaryExpr {
/// Apply a basic binary operation.
fn apply(
&self,
vm: &mut Vm,
op: fn(Value, Value) -> StrResult<Value>,
) -> TypResult<Value> {
let lhs = self.lhs().eval(vm)?;
// Short-circuit boolean operations.
if (self.op() == BinOp::And && lhs == Value::Bool(false))
|| (self.op() == BinOp::Or && lhs == Value::Bool(true))
{
return Ok(lhs);
}
let rhs = self.rhs().eval(vm)?;
op(lhs, rhs).at(self.span())
}
/// Apply an assignment operation.
fn assign(
&self,
vm: &mut Vm,
op: fn(Value, Value) -> StrResult<Value>,
) -> TypResult<Value> {
let rhs = self.rhs().eval(vm)?;
self.lhs().access(
vm,
Box::new(|target| {
let lhs = mem::take(&mut *target);
*target = op(lhs, rhs).at(self.span())?;
Ok(())
}),
)?;
Ok(Value::None)
}
}
impl Eval for CallExpr {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
let span = self.callee().span();
let callee = self.callee().eval(vm)?;
let args = self.args().eval(vm)?;
match callee {
Value::Array(array) => {
array.get(args.into_index()?).map(Value::clone).at(self.span())
}
Value::Dict(dict) => {
dict.get(args.into_key()?).map(Value::clone).at(self.span())
}
Value::Func(func) => {
let point = || Tracepoint::Call(func.name().map(ToString::to_string));
func.call(vm, args).trace(point, self.span())
}
Value::Class(class) => {
let point = || Tracepoint::Call(Some(class.name().to_string()));
class.construct(vm, args).trace(point, self.span())
}
v => bail!(
span,
"expected callable or collection, found {}",
v.type_name(),
),
}
}
}
impl Eval for CallArgs {
type Output = Args;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
let mut items = Vec::new();
for arg in self.items() {
let span = arg.span();
match arg {
CallArg::Pos(expr) => {
items.push(Arg {
span,
name: None,
value: Spanned::new(expr.eval(vm)?, expr.span()),
});
}
CallArg::Named(named) => {
items.push(Arg {
span,
name: Some(named.name().take()),
value: Spanned::new(named.expr().eval(vm)?, named.expr().span()),
});
}
CallArg::Spread(expr) => match expr.eval(vm)? {
Value::None => {}
Value::Array(array) => {
items.extend(array.into_iter().map(|value| Arg {
span,
name: None,
value: Spanned::new(value, span),
}));
}
Value::Dict(dict) => {
items.extend(dict.into_iter().map(|(key, value)| Arg {
span,
name: Some(key),
value: Spanned::new(value, span),
}));
}
Value::Args(args) => items.extend(args.items),
v => bail!(expr.span(), "cannot spread {}", v.type_name()),
},
}
}
Ok(Args { span: self.span(), items })
}
}
impl Eval for ClosureExpr {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
// The closure's name is defined by its let binding if there's one.
let name = self.name().map(Ident::take);
// Collect captured variables.
let captured = {
let mut visitor = CapturesVisitor::new(&vm.scopes);
visitor.visit(self.as_red());
visitor.finish()
};
let mut params = Vec::new();
let mut sink = None;
// Collect parameters and an optional sink parameter.
for param in self.params() {
match param {
ClosureParam::Pos(name) => {
params.push((name.take(), None));
}
ClosureParam::Named(named) => {
params.push((named.name().take(), Some(named.expr().eval(vm)?)));
}
ClosureParam::Sink(name) => {
if sink.is_some() {
bail!(name.span(), "only one argument sink is allowed");
}
sink = Some(name.take());
}
}
}
// Define the actual function.
Ok(Value::Func(Func::closure(Closure {
name,
captured,
params,
sink,
body: self.body(),
})))
}
}
impl Eval for WithExpr {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
let callee = self.callee();
let func = callee.eval(vm)?.cast::<Func>().at(callee.span())?;
let args = self.args().eval(vm)?;
Ok(Value::Func(func.with(args)))
}
}
impl Eval for LetExpr {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
let value = match self.init() {
Some(expr) => expr.eval(vm)?,
None => Value::None,
};
vm.scopes.top.def_mut(self.binding().take(), value);
Ok(Value::None)
}
}
impl Eval for SetExpr {
type Output = StyleMap;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
let class = self.class();
let class = class.eval(vm)?.cast::<Class>().at(class.span())?;
let args = self.args().eval(vm)?;
class.set(args)
}
}
impl Eval for ShowExpr {
type Output = StyleMap;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
let class = self.class();
let class = class.eval(vm)?.cast::<Class>().at(class.span())?;
let closure = self.closure();
let func = closure.eval(vm)?.cast::<Func>().at(closure.span())?;
let mut styles = StyleMap::new();
styles.set_recipe(class.id(), func, self.span());
Ok(styles)
}
}
impl Eval for IfExpr {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
let condition = self.condition();
if condition.eval(vm)?.cast::<bool>().at(condition.span())? {
self.if_body().eval(vm)
} else if let Some(else_body) = self.else_body() {
else_body.eval(vm)
} else {
Ok(Value::None)
}
}
}
impl Eval for WhileExpr {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
let mut output = Value::None;
let condition = self.condition();
while condition.eval(vm)?.cast::<bool>().at(condition.span())? {
let body = self.body();
let value = body.eval(vm)?;
output = ops::join(output, value).at(body.span())?;
}
Ok(output)
}
}
impl Eval for ForExpr {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
macro_rules! iter {
(for ($($binding:ident => $value:ident),*) in $iter:expr) => {{
let mut output = Value::None;
vm.scopes.enter();
#[allow(unused_parens)]
for ($($value),*) in $iter {
$(vm.scopes.top.def_mut(&$binding, $value);)*
let value = self.body().eval(vm)?;
output = ops::join(output, value)
.at(self.body().span())?;
}
vm.scopes.exit();
return Ok(output);
}};
}
let iter = self.iter().eval(vm)?;
let pattern = self.pattern();
let key = pattern.key().map(Ident::take);
let value = pattern.value().take();
match (key, value, iter) {
(None, v, Value::Str(string)) => {
iter!(for (v => value) in string.graphemes(true));
}
(None, v, Value::Array(array)) => {
iter!(for (v => value) in array.into_iter());
}
(Some(i), v, Value::Array(array)) => {
iter!(for (i => idx, v => value) in array.into_iter().enumerate());
}
(None, v, Value::Dict(dict)) => {
iter!(for (v => value) in dict.into_iter().map(|p| p.1));
}
(Some(k), v, Value::Dict(dict)) => {
iter!(for (k => key, v => value) in dict.into_iter());
}
(None, v, Value::Args(args)) => {
iter!(for (v => value) in args.items.into_iter()
.filter(|arg| arg.name.is_none())
.map(|arg| arg.value.v));
}
(Some(k), v, Value::Args(args)) => {
iter!(for (k => key, v => value) in args.items.into_iter()
.map(|arg| (arg.name.map_or(Value::None, Value::Str), arg.value.v)));
}
(_, _, Value::Str(_)) => {
bail!(pattern.span(), "mismatched pattern");
}
(_, _, iter) => {
bail!(self.iter().span(), "cannot loop over {}", iter.type_name());
}
}
}
}
impl Eval for ImportExpr {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
let span = self.path().span();
let path = self.path().eval(vm)?.cast::<EcoString>().at(span)?;
let module = import(vm, &path, span)?;
match self.imports() {
Imports::Wildcard => {
for (var, slot) in module.scope.iter() {
vm.scopes.top.def_mut(var, slot.read().unwrap().clone());
}
}
Imports::Items(idents) => {
for ident in idents {
if let Some(slot) = module.scope.get(&ident) {
vm.scopes.top.def_mut(ident.take(), slot.read().unwrap().clone());
} else {
bail!(ident.span(), "unresolved import");
}
}
}
}
Ok(Value::None)
}
}
impl Eval for IncludeExpr {
type Output = Value;
fn eval(&self, vm: &mut Vm) -> TypResult<Self::Output> {
let span = self.path().span();
let path = self.path().eval(vm)?.cast::<EcoString>().at(span)?;
let module = import(vm, &path, span)?;
Ok(Value::Template(module.template.clone()))
}
}
/// Process an import of a module relative to the current location.
fn import(vm: &mut Vm, path: &str, span: Span) -> TypResult<Module> {
// Load the source file.
let full = vm.resolve(path);
let id = vm.sources.load(&full).map_err(|err| {
Error::boxed(span, match err.kind() {
io::ErrorKind::NotFound => "file not found".into(),
_ => format!("failed to load source file ({})", err),
})
})?;
// Prevent cyclic importing.
if vm.route.contains(&id) {
bail!(span, "cyclic import");
}
// Evaluate the file.
vm.evaluate(id).trace(|| Tracepoint::Import, span)
}
impl Eval for BreakExpr {
type Output = Value;
fn eval(&self, _: &mut Vm) -> TypResult<Self::Output> {
Err("break is not yet implemented").at(self.span())
}
}
impl Eval for ContinueExpr {
type Output = Value;
fn eval(&self, _: &mut Vm) -> TypResult<Self::Output> {
Err("continue is not yet implemented").at(self.span())
}
}
impl Eval for ReturnExpr {
type Output = Value;
fn eval(&self, _: &mut Vm) -> TypResult<Self::Output> {
Err("return is not yet implemented").at(self.span())
}
}
/// Try to mutably access the value an expression points to.
///
/// This only works if the expression is a valid lvalue.
pub trait Access {
/// Try to access the value.
fn access(&self, vm: &mut Vm, f: Handler) -> TypResult<()>;
}
/// Process an accessed value.
type Handler<'a> = Box<dyn FnOnce(&mut Value) -> TypResult<()> + 'a>;
impl Access for Expr {
fn access(&self, vm: &mut Vm, f: Handler) -> TypResult<()> {
match self {
Expr::Ident(ident) => ident.access(vm, f),
Expr::Call(call) => call.access(vm, f),
_ => bail!(self.span(), "cannot access this expression mutably"),
}
}
}
impl Access for Ident {
fn access(&self, vm: &mut Vm, f: Handler) -> TypResult<()> {
match vm.scopes.get(self) {
Some(slot) => match slot.try_write() {
Ok(mut guard) => f(&mut guard),
Err(_) => bail!(self.span(), "cannot mutate a constant"),
},
None => bail!(self.span(), "unknown variable"),
}
}
}
impl Access for CallExpr {
fn access(&self, vm: &mut Vm, f: Handler) -> TypResult<()> {
let args = self.args().eval(vm)?;
self.callee().access(
vm,
Box::new(|value| match value {
Value::Array(array) => {
f(array.get_mut(args.into_index()?).at(self.span())?)
}
Value::Dict(dict) => f(dict.get_mut(args.into_key()?)),
v => bail!(
self.callee().span(),
"expected collection, found {}",
v.type_name(),
),
}),
)
}
}