typst/src/eval/mod.rs
2021-01-01 16:43:58 +01:00

676 lines
20 KiB
Rust

//! Evaluation of syntax trees.
#[macro_use]
mod value;
mod args;
mod dict;
mod scope;
mod state;
pub use args::*;
pub use dict::*;
pub use scope::*;
pub use state::*;
pub use value::*;
use std::any::Any;
use std::rc::Rc;
use fontdock::FontStyle;
use crate::color::Color;
use crate::diag::Diag;
use crate::diag::{Deco, Feedback, Pass};
use crate::env::SharedEnv;
use crate::geom::{BoxAlign, Dir, Flow, Gen, Length, Linear, Relative, Sides, Size};
use crate::layout::{
Document, Expansion, LayoutNode, Pad, Pages, Par, Spacing, Stack, Text,
};
use crate::syntax::*;
/// Evaluate a syntax tree into a document.
///
/// The given `state` is the base state that may be updated over the course of
/// evaluation.
pub fn eval(tree: &SynTree, env: SharedEnv, state: State) -> Pass<Document> {
let mut ctx = EvalContext::new(env, state);
ctx.start_page_group(Softness::Hard);
tree.eval(&mut ctx);
ctx.end_page_group(|s| s == Softness::Hard);
ctx.finish()
}
/// The context for evaluation.
#[derive(Debug)]
pub struct EvalContext {
/// The environment from which resources are gathered.
pub env: SharedEnv,
/// The active evaluation state.
pub state: State,
/// The accumulated feedback.
f: Feedback,
/// The finished page runs.
runs: Vec<Pages>,
/// The stack of logical groups (paragraphs and such).
///
/// Each entry contains metadata about the group and nodes that are at the
/// same level as the group, which will return to `inner` once the group is
/// finished.
groups: Vec<(Box<dyn Any>, Vec<LayoutNode>)>,
/// The nodes in the current innermost group
/// (whose metadata is in `groups.last()`).
inner: Vec<LayoutNode>,
}
impl EvalContext {
/// Create a new evaluation context with a base state.
pub fn new(env: SharedEnv, state: State) -> Self {
Self {
env,
state,
groups: vec![],
inner: vec![],
runs: vec![],
f: Feedback::new(),
}
}
/// Finish evaluation and return the created document.
pub fn finish(self) -> Pass<Document> {
assert!(self.groups.is_empty(), "unfinished group");
Pass::new(Document { runs: self.runs }, self.f)
}
/// Add a diagnostic to the feedback.
pub fn diag(&mut self, diag: Spanned<Diag>) {
self.f.diags.push(diag);
}
/// Add a decoration to the feedback.
pub fn deco(&mut self, deco: Spanned<Deco>) {
self.f.decos.push(deco);
}
/// Push a layout node to the active group.
///
/// Spacing nodes will be handled according to their [`Softness`].
pub fn push(&mut self, node: impl Into<LayoutNode>) {
let node = node.into();
if let LayoutNode::Spacing(this) = node {
if this.softness == Softness::Soft && self.inner.is_empty() {
return;
}
if let Some(&LayoutNode::Spacing(other)) = self.inner.last() {
if this.softness > other.softness {
self.inner.pop();
} else if this.softness == Softness::Soft {
return;
}
}
}
self.inner.push(node);
}
/// Start a page group based on the active page state.
///
/// The `softness` is a hint on whether empty pages should be kept in the
/// output.
///
/// This also starts an inner paragraph.
pub fn start_page_group(&mut self, softness: Softness) {
self.start_group(PageGroup {
size: self.state.page.size,
padding: self.state.page.margins(),
flow: self.state.flow,
align: self.state.align,
softness,
});
self.start_par_group();
}
/// End a page group, returning its [`Softness`].
///
/// Whether the page is kept when it's empty is decided by `keep_empty`
/// based on its softness. If kept, the page is pushed to the finished page
/// runs.
///
/// This also ends an inner paragraph.
pub fn end_page_group(
&mut self,
keep_empty: impl FnOnce(Softness) -> bool,
) -> Softness {
self.end_par_group();
let (group, children) = self.end_group::<PageGroup>();
if !children.is_empty() || keep_empty(group.softness) {
self.runs.push(Pages {
size: group.size,
child: LayoutNode::dynamic(Pad {
padding: group.padding,
child: LayoutNode::dynamic(Stack {
flow: group.flow,
align: group.align,
expansion: Gen::uniform(Expansion::Fill),
children,
}),
}),
})
}
group.softness
}
/// Start a content group.
///
/// This also starts an inner paragraph.
pub fn start_content_group(&mut self) {
self.start_group(ContentGroup);
self.start_par_group();
}
/// End a content group and return the resulting nodes.
///
/// This also ends an inner paragraph.
pub fn end_content_group(&mut self) -> Vec<LayoutNode> {
self.end_par_group();
self.end_group::<ContentGroup>().1
}
/// Start a paragraph group based on the active text state.
pub fn start_par_group(&mut self) {
let em = self.state.font.font_size();
self.start_group(ParGroup {
flow: self.state.flow,
align: self.state.align,
line_spacing: self.state.par.line_spacing.resolve(em),
});
}
/// End a paragraph group and push it to its parent group if it's not empty.
pub fn end_par_group(&mut self) {
let (group, children) = self.end_group::<ParGroup>();
if !children.is_empty() {
// FIXME: This is a hack and should be superseded by something
// better.
let cross_expansion = Expansion::fill_if(self.groups.len() <= 1);
self.push(Par {
flow: group.flow,
align: group.align,
cross_expansion,
line_spacing: group.line_spacing,
children,
});
}
}
/// Start a layouting group.
///
/// All further calls to [`push`](Self::push) will collect nodes for this group.
/// The given metadata will be returned alongside the collected nodes
/// in a matching call to [`end_group`](Self::end_group).
fn start_group<T: 'static>(&mut self, meta: T) {
self.groups.push((Box::new(meta), std::mem::take(&mut self.inner)));
}
/// End a layouting group started with [`start_group`](Self::start_group).
///
/// This returns the stored metadata and the collected nodes.
#[track_caller]
fn end_group<T: 'static>(&mut self) -> (T, Vec<LayoutNode>) {
if let Some(&LayoutNode::Spacing(spacing)) = self.inner.last() {
if spacing.softness == Softness::Soft {
self.inner.pop();
}
}
let (any, outer) = self.groups.pop().expect("no pushed group");
let group = *any.downcast::<T>().expect("bad group type");
(group, std::mem::replace(&mut self.inner, outer))
}
/// Updates the flow directions if the resulting main and cross directions
/// apply to different axes. Generates an appropriate error, otherwise.
pub fn set_flow(&mut self, new: Gen<Option<Spanned<Dir>>>) {
let flow = Gen::new(
new.main.map(|s| s.v).unwrap_or(self.state.flow.main),
new.cross.map(|s| s.v).unwrap_or(self.state.flow.cross),
);
if flow.main.axis() != flow.cross.axis() {
self.state.flow = flow;
} else {
for dir in new.main.iter().chain(new.cross.iter()) {
self.diag(error!(dir.span, "aligned axis"));
}
}
}
/// Construct a text node from the given string based on the active text
/// state.
pub fn make_text_node(&self, text: String) -> Text {
let mut variant = self.state.font.variant;
if self.state.font.strong {
variant.weight = variant.weight.thicken(300);
}
if self.state.font.emph {
variant.style = match variant.style {
FontStyle::Normal => FontStyle::Italic,
FontStyle::Italic => FontStyle::Normal,
FontStyle::Oblique => FontStyle::Normal,
}
}
Text {
text,
align: self.state.align,
dir: self.state.flow.cross,
font_size: self.state.font.font_size(),
families: Rc::clone(&self.state.font.families),
variant,
}
}
}
/// A group for page runs.
struct PageGroup {
size: Size,
padding: Sides<Linear>,
flow: Flow,
align: BoxAlign,
softness: Softness,
}
/// A group for generic content.
struct ContentGroup;
/// A group for paragraphs.
struct ParGroup {
flow: Flow,
align: BoxAlign,
line_spacing: Length,
}
/// Defines how items interact with surrounding items.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
pub enum Softness {
/// Soft items can be skipped in some circumstances.
Soft,
/// Hard items are always retained.
Hard,
}
/// Evaluate an item.
///
/// _Note_: Evaluation is not necessarily pure, it may change the active state.
pub trait Eval {
/// The output of evaluating the item.
type Output;
/// Evaluate the item to the output value.
fn eval(&self, ctx: &mut EvalContext) -> Self::Output;
}
impl Eval for SynTree {
type Output = ();
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
for node in self {
node.v.eval(ctx);
}
}
}
impl Eval for SynNode {
type Output = ();
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
match self {
SynNode::Text(text) => {
let node = ctx.make_text_node(text.clone());
ctx.push(node);
}
SynNode::Space => {
let em = ctx.state.font.font_size();
ctx.push(Spacing {
amount: ctx.state.par.word_spacing.resolve(em),
softness: Softness::Soft,
});
}
SynNode::Linebreak => {
ctx.end_par_group();
ctx.start_par_group();
}
SynNode::Parbreak => {
ctx.end_par_group();
let em = ctx.state.font.font_size();
ctx.push(Spacing {
amount: ctx.state.par.par_spacing.resolve(em),
softness: Softness::Soft,
});
ctx.start_par_group();
}
SynNode::Strong => ctx.state.font.strong ^= true,
SynNode::Emph => ctx.state.font.emph ^= true,
SynNode::Heading(heading) => heading.eval(ctx),
SynNode::Raw(raw) => raw.eval(ctx),
SynNode::Expr(expr) => expr.eval(ctx).eval(ctx),
}
}
}
impl Eval for NodeHeading {
type Output = ();
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let prev = ctx.state.clone();
let upscale = 1.5 - 0.1 * self.level.v as f64;
ctx.state.font.scale *= upscale;
ctx.state.font.strong = true;
self.contents.eval(ctx);
SynNode::Parbreak.eval(ctx);
ctx.state = prev;
}
}
impl Eval for NodeRaw {
type Output = ();
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let prev = Rc::clone(&ctx.state.font.families);
let families = Rc::make_mut(&mut ctx.state.font.families);
families.list.insert(0, "monospace".to_string());
families.flatten();
let em = ctx.state.font.font_size();
let line_spacing = ctx.state.par.line_spacing.resolve(em);
let mut children = vec![];
for line in &self.lines {
children.push(LayoutNode::Text(ctx.make_text_node(line.clone())));
children.push(LayoutNode::Spacing(Spacing {
amount: line_spacing,
softness: Softness::Hard,
}));
}
ctx.push(Stack {
flow: ctx.state.flow,
align: ctx.state.align,
expansion: Gen::uniform(Expansion::Fit),
children,
});
ctx.state.font.families = prev;
}
}
impl Eval for Expr {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
match self {
Self::Lit(lit) => lit.eval(ctx),
Self::Call(call) => call.eval(ctx),
Self::Unary(unary) => unary.eval(ctx),
Self::Binary(binary) => binary.eval(ctx),
}
}
}
impl Eval for Lit {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
match *self {
Lit::Ident(ref v) => Value::Ident(v.clone()),
Lit::Bool(v) => Value::Bool(v),
Lit::Int(v) => Value::Int(v),
Lit::Float(v) => Value::Float(v),
Lit::Length(v, unit) => Value::Length(Length::with_unit(v, unit)),
Lit::Percent(v) => Value::Relative(Relative::new(v / 100.0)),
Lit::Color(v) => Value::Color(Color::Rgba(v)),
Lit::Str(ref v) => Value::Str(v.clone()),
Lit::Dict(ref v) => Value::Dict(v.eval(ctx)),
Lit::Content(ref v) => Value::Content(v.clone()),
}
}
}
impl Eval for LitDict {
type Output = ValueDict;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let mut dict = ValueDict::new();
for entry in &self.0 {
let val = entry.expr.v.eval(ctx);
let spanned = val.span_with(entry.expr.span);
if let Some(key) = &entry.key {
dict.insert(&key.v, SpannedEntry::new(key.span, spanned));
} else {
dict.push(SpannedEntry::value(spanned));
}
}
dict
}
}
impl Eval for ExprCall {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let name = &self.name.v;
let span = self.name.span;
let dict = self.args.v.eval(ctx);
if let Some(func) = ctx.state.scope.get(name) {
let args = Args(dict.span_with(self.args.span));
ctx.f.decos.push(Deco::Resolved.span_with(span));
(func.clone())(args, ctx)
} else {
if !name.is_empty() {
ctx.diag(error!(span, "unknown function"));
ctx.f.decos.push(Deco::Unresolved.span_with(span));
}
Value::Dict(dict)
}
}
}
impl Eval for ExprUnary {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let value = self.expr.v.eval(ctx);
if let Value::Error = value {
return Value::Error;
}
let span = self.op.span.join(self.expr.span);
match self.op.v {
UnOp::Neg => neg(ctx, span, value),
}
}
}
impl Eval for ExprBinary {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let lhs = self.lhs.v.eval(ctx);
let rhs = self.rhs.v.eval(ctx);
if lhs == Value::Error || rhs == Value::Error {
return Value::Error;
}
let span = self.lhs.span.join(self.rhs.span);
match self.op.v {
BinOp::Add => add(ctx, span, lhs, rhs),
BinOp::Sub => sub(ctx, span, lhs, rhs),
BinOp::Mul => mul(ctx, span, lhs, rhs),
BinOp::Div => div(ctx, span, lhs, rhs),
}
}
}
/// Compute the negation of a value.
fn neg(ctx: &mut EvalContext, span: Span, value: Value) -> Value {
use Value::*;
match value {
Int(v) => Int(-v),
Float(v) => Float(-v),
Length(v) => Length(-v),
Relative(v) => Relative(-v),
Linear(v) => Linear(-v),
v => {
ctx.diag(error!(span, "cannot negate {}", v.ty()));
Value::Error
}
}
}
/// Compute the sum of two values.
fn add(ctx: &mut EvalContext, span: Span, lhs: Value, rhs: Value) -> Value {
use Value::*;
match (lhs, rhs) {
// Numbers to themselves.
(Int(a), Int(b)) => Int(a + b),
(Int(a), Float(b)) => Float(a as f64 + b),
(Float(a), Int(b)) => Float(a + b as f64),
(Float(a), Float(b)) => Float(a + b),
// Lengths, relatives and linears to themselves.
(Length(a), Length(b)) => Length(a + b),
(Length(a), Relative(b)) => Linear(a + b),
(Length(a), Linear(b)) => Linear(a + b),
(Relative(a), Length(b)) => Linear(a + b),
(Relative(a), Relative(b)) => Relative(a + b),
(Relative(a), Linear(b)) => Linear(a + b),
(Linear(a), Length(b)) => Linear(a + b),
(Linear(a), Relative(b)) => Linear(a + b),
(Linear(a), Linear(b)) => Linear(a + b),
// Complex data types to themselves.
(Str(a), Str(b)) => Str(a + &b),
(Dict(a), Dict(b)) => Dict(concat(a, b)),
(Content(a), Content(b)) => Content(concat(a, b)),
(a, b) => {
ctx.diag(error!(span, "cannot add {} and {}", a.ty(), b.ty()));
Value::Error
}
}
}
/// Compute the difference of two values.
fn sub(ctx: &mut EvalContext, span: Span, lhs: Value, rhs: Value) -> Value {
use Value::*;
match (lhs, rhs) {
// Numbers from themselves.
(Int(a), Int(b)) => Int(a - b),
(Int(a), Float(b)) => Float(a as f64 - b),
(Float(a), Int(b)) => Float(a - b as f64),
(Float(a), Float(b)) => Float(a - b),
// Lengths, relatives and linears from themselves.
(Length(a), Length(b)) => Length(a - b),
(Length(a), Relative(b)) => Linear(a - b),
(Length(a), Linear(b)) => Linear(a - b),
(Relative(a), Length(b)) => Linear(a - b),
(Relative(a), Relative(b)) => Relative(a - b),
(Relative(a), Linear(b)) => Linear(a - b),
(Linear(a), Length(b)) => Linear(a - b),
(Linear(a), Relative(b)) => Linear(a - b),
(Linear(a), Linear(b)) => Linear(a - b),
(a, b) => {
ctx.diag(error!(span, "cannot subtract {1} from {0}", a.ty(), b.ty()));
Value::Error
}
}
}
/// Compute the product of two values.
fn mul(ctx: &mut EvalContext, span: Span, lhs: Value, rhs: Value) -> Value {
use Value::*;
match (lhs, rhs) {
// Numbers with themselves.
(Int(a), Int(b)) => Int(a * b),
(Int(a), Float(b)) => Float(a as f64 * b),
(Float(a), Int(b)) => Float(a * b as f64),
(Float(a), Float(b)) => Float(a * b),
// Lengths, relatives and linears with numbers.
(Length(a), Int(b)) => Length(a * b as f64),
(Length(a), Float(b)) => Length(a * b),
(Int(a), Length(b)) => Length(a as f64 * b),
(Float(a), Length(b)) => Length(a * b),
(Relative(a), Int(b)) => Relative(a * b as f64),
(Relative(a), Float(b)) => Relative(a * b),
(Int(a), Relative(b)) => Relative(a as f64 * b),
(Float(a), Relative(b)) => Relative(a * b),
(Linear(a), Int(b)) => Linear(a * b as f64),
(Linear(a), Float(b)) => Linear(a * b),
(Int(a), Linear(b)) => Linear(a as f64 * b),
(Float(a), Linear(b)) => Linear(a * b),
// Integers with strings.
(Int(a), Str(b)) => Str(b.repeat(0.max(a) as usize)),
(Str(a), Int(b)) => Str(a.repeat(0.max(b) as usize)),
(a, b) => {
ctx.diag(error!(span, "cannot multiply {} with {}", a.ty(), b.ty()));
Value::Error
}
}
}
/// Compute the quotient of two values.
fn div(ctx: &mut EvalContext, span: Span, lhs: Value, rhs: Value) -> Value {
use Value::*;
match (lhs, rhs) {
// Numbers by themselves.
(Int(a), Int(b)) => Float(a as f64 / b as f64),
(Int(a), Float(b)) => Float(a as f64 / b),
(Float(a), Int(b)) => Float(a / b as f64),
(Float(a), Float(b)) => Float(a / b),
// Lengths by numbers.
(Length(a), Int(b)) => Length(a / b as f64),
(Length(a), Float(b)) => Length(a / b),
(Relative(a), Int(b)) => Relative(a / b as f64),
(Relative(a), Float(b)) => Relative(a / b),
(Linear(a), Int(b)) => Linear(a / b as f64),
(Linear(a), Float(b)) => Linear(a / b),
(a, b) => {
ctx.diag(error!(span, "cannot divide {} by {}", a.ty(), b.ty()));
Value::Error
}
}
}
/// Concatenate two collections.
fn concat<T, A>(mut a: T, b: T) -> T
where
T: Extend<A> + IntoIterator<Item = A>,
{
a.extend(b);
a
}