typst/src/font.rs
2022-04-08 15:45:14 +02:00

928 lines
29 KiB
Rust

//! Font handling.
use std::cmp::Reverse;
use std::collections::{hash_map::Entry, BTreeMap, HashMap};
use std::fmt::{self, Debug, Formatter};
use std::path::{Path, PathBuf};
use std::sync::Arc;
use serde::{Deserialize, Serialize};
use ttf_parser::{name_id, GlyphId, PlatformId, Tag};
use unicode_segmentation::UnicodeSegmentation;
use crate::geom::Em;
use crate::loading::{FileHash, Loader};
use crate::util::decode_mac_roman;
/// A unique identifier for a loaded font face.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
pub struct FaceId(u32);
impl FaceId {
/// Create a face id from the raw underlying value.
///
/// This should only be called with values returned by
/// [`into_raw`](Self::into_raw).
pub const fn from_raw(v: u32) -> Self {
Self(v)
}
/// Convert into the raw underlying value.
pub const fn into_raw(self) -> u32 {
self.0
}
}
/// Storage for loaded and parsed font faces.
pub struct FontStore {
loader: Arc<dyn Loader>,
failed: Vec<bool>,
faces: Vec<Option<Face>>,
families: BTreeMap<String, Vec<FaceId>>,
buffers: HashMap<FileHash, Arc<Vec<u8>>>,
}
impl FontStore {
/// Create a new, empty font store.
pub fn new(loader: Arc<dyn Loader>) -> Self {
let mut faces = vec![];
let mut failed = vec![];
let mut families = BTreeMap::<String, Vec<FaceId>>::new();
let infos = loader.faces();
for (i, info) in infos.iter().enumerate() {
let id = FaceId(i as u32);
faces.push(None);
failed.push(false);
families.entry(info.family.to_lowercase()).or_default().push(id);
}
for faces in families.values_mut() {
faces.sort_by_key(|id| infos[id.0 as usize].variant);
faces.dedup_by_key(|id| infos[id.0 as usize].variant);
}
Self {
loader,
faces,
failed,
families,
buffers: HashMap::new(),
}
}
/// Try to find and load a font face from the given `family` that matches
/// the given `variant` as closely as possible.
pub fn select(&mut self, family: &str, variant: FontVariant) -> Option<FaceId> {
let ids = self.families.get(family)?;
let id = self.find_best_variant(None, variant, ids.iter().copied())?;
self.load(id)
}
/// Try to find and load a fallback font that
/// - is as close as possible to the face `like` (if any)
/// - is as close as possible to the given `variant`
/// - is suitable for shaping the given `text`
pub fn select_fallback(
&mut self,
like: Option<FaceId>,
variant: FontVariant,
text: &str,
) -> Option<FaceId> {
// Find the faces that contain the text's first char ...
let c = text.chars().next()?;
let ids = self
.loader
.faces()
.iter()
.enumerate()
.filter(|(_, info)| info.coverage.contains(c as u32))
.map(|(i, _)| FaceId(i as u32));
// ... and find the best variant among them.
let id = self.find_best_variant(like, variant, ids)?;
self.load(id)
}
/// Find the face in the passed iterator that
/// - is closest to the face `like` (if any)
/// - is closest to the given `variant`
///
/// To do that we compute a key for all variants and select the one with the
/// minimal key. This key prioritizes:
/// - If `like` is some other face:
/// - Are both faces (not) monospaced.
/// - Do both faces (not) have serifs.
/// - How many words do the families share in their prefix? E.g. "Noto
/// Sans" and "Noto Sans Arabic" share two words, whereas "IBM Plex
/// Arabic" shares none with "Noto Sans", so prefer "Noto Sans Arabic"
/// if `like` is "Noto Sans". In case there are two equally good
/// matches, we prefer the shorter one because it is less special (e.g.
/// if `like` is "Noto Sans Arabic", we prefer "Noto Sans" over "Noto
/// Sans CJK HK".)
/// - The style (normal / italic / oblique). If we want italic or oblique
/// but it doesn't exist, the other one of the two is still better than
/// normal.
/// - The absolute distance to the target stretch.
/// - The absolute distance to the target weight.
fn find_best_variant(
&self,
like: Option<FaceId>,
variant: FontVariant,
ids: impl IntoIterator<Item = FaceId>,
) -> Option<FaceId> {
let infos = self.loader.faces();
let like = like.map(|id| &infos[id.0 as usize]);
let mut best = None;
let mut best_key = None;
// Find the best matching variant of this font.
for id in ids {
let current = &infos[id.0 as usize];
let key = (
like.map(|like| {
(
current.monospaced != like.monospaced,
like.serif.is_some() && current.serif != like.serif,
Reverse(shared_prefix_words(&current.family, &like.family)),
current.family.len(),
)
}),
current.variant.style.distance(variant.style),
current.variant.stretch.distance(variant.stretch),
current.variant.weight.distance(variant.weight),
);
if best_key.map_or(true, |b| key < b) {
best = Some(id);
best_key = Some(key);
}
}
best
}
/// Load the face with the given id.
///
/// Returns `Some(id)` if the face was loaded successfully.
fn load(&mut self, id: FaceId) -> Option<FaceId> {
let idx = id.0 as usize;
let slot = &mut self.faces[idx];
if slot.is_some() {
return Some(id);
}
if self.failed[idx] {
return None;
}
let FaceInfo { ref path, index, .. } = self.loader.faces()[idx];
self.failed[idx] = true;
// Check the buffer cache since multiple faces may
// refer to the same data (font collection).
let hash = self.loader.resolve(path).ok()?;
let buffer = match self.buffers.entry(hash) {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => {
let buffer = self.loader.load(path).ok()?;
entry.insert(Arc::new(buffer))
}
};
let face = Face::new(Arc::clone(buffer), index)?;
*slot = Some(face);
self.failed[idx] = false;
Some(id)
}
/// Get a reference to a loaded face.
///
/// This panics if the face with this `id` was not loaded. This function
/// should only be called with ids returned by this store's
/// [`select()`](Self::select) and
/// [`select_fallback()`](Self::select_fallback) methods.
#[track_caller]
pub fn get(&self, id: FaceId) -> &Face {
self.faces[id.0 as usize].as_ref().expect("font face was not loaded")
}
/// An ordered iterator over all font families this loader knows and details
/// about the faces that are part of them.
pub fn families(
&self,
) -> impl Iterator<Item = (&str, impl Iterator<Item = &FaceInfo>)> + '_ {
// Since the keys are lowercased, we instead use the family field of the
// first face's info.
let faces = self.loader.faces();
self.families.values().map(|ids| {
let family = faces[ids[0].0 as usize].family.as_str();
let infos = ids.iter().map(|&id| &faces[id.0 as usize]);
(family, infos)
})
}
}
/// How many words the two strings share in their prefix.
fn shared_prefix_words(left: &str, right: &str) -> usize {
left.unicode_words()
.zip(right.unicode_words())
.take_while(|(l, r)| l == r)
.count()
}
/// A font face.
pub struct Face {
/// The raw face data, possibly shared with other faces from the same
/// collection. Must stay alive put, because `ttf` points into it using
/// unsafe code.
buffer: Arc<Vec<u8>>,
/// The face's index in the collection (zero if not a collection).
index: u32,
/// The underlying ttf-parser/rustybuzz face.
ttf: rustybuzz::Face<'static>,
/// The faces metrics.
metrics: FaceMetrics,
}
impl Face {
/// Parse a font face from a buffer and collection index.
pub fn new(buffer: Arc<Vec<u8>>, index: u32) -> Option<Self> {
// Safety:
// - The slices's location is stable in memory:
// - We don't move the underlying vector
// - Nobody else can move it since we have a strong ref to the `Arc`.
// - The internal static lifetime is not leaked because its rewritten
// to the self-lifetime in `ttf()`.
let slice: &'static [u8] =
unsafe { std::slice::from_raw_parts(buffer.as_ptr(), buffer.len()) };
let ttf = rustybuzz::Face::from_slice(slice, index)?;
let metrics = FaceMetrics::from_ttf(&ttf);
Some(Self { buffer, index, ttf, metrics })
}
/// The underlying buffer.
pub fn buffer(&self) -> &Arc<Vec<u8>> {
&self.buffer
}
/// The collection index.
pub fn index(&self) -> u32 {
self.index
}
/// A reference to the underlying `ttf-parser` / `rustybuzz` face.
pub fn ttf(&self) -> &rustybuzz::Face<'_> {
// We can't implement Deref because that would leak the internal 'static
// lifetime.
&self.ttf
}
/// The number of units per em.
pub fn units_per_em(&self) -> f64 {
self.metrics.units_per_em
}
/// Access the face's metrics.
pub fn metrics(&self) -> &FaceMetrics {
&self.metrics
}
/// Convert from font units to an em length.
pub fn to_em(&self, units: impl Into<f64>) -> Em {
Em::from_units(units, self.units_per_em())
}
/// Look up the horizontal advance width of a glyph.
pub fn advance(&self, glyph: u16) -> Option<Em> {
self.ttf
.glyph_hor_advance(GlyphId(glyph))
.map(|units| self.to_em(units))
}
}
/// Metrics for a font face.
#[derive(Debug, Copy, Clone)]
pub struct FaceMetrics {
/// How many font units represent one em unit.
pub units_per_em: f64,
/// The distance from the baseline to the typographic ascender.
pub ascender: Em,
/// The approximate height of uppercase letters.
pub cap_height: Em,
/// The approximate height of non-ascending lowercase letters.
pub x_height: Em,
/// The distance from the baseline to the typographic descender.
pub descender: Em,
/// Recommended metrics for a strikethrough line.
pub strikethrough: LineMetrics,
/// Recommended metrics for an underline.
pub underline: LineMetrics,
/// Recommended metrics for an overline.
pub overline: LineMetrics,
}
impl FaceMetrics {
/// Extract the face's metrics.
pub fn from_ttf(ttf: &ttf_parser::Face) -> Self {
let units_per_em = f64::from(ttf.units_per_em().unwrap_or(0));
let to_em = |units| Em::from_units(units, units_per_em);
let ascender = to_em(ttf.typographic_ascender().unwrap_or(ttf.ascender()));
let cap_height = ttf.capital_height().filter(|&h| h > 0).map_or(ascender, to_em);
let x_height = ttf.x_height().filter(|&h| h > 0).map_or(ascender, to_em);
let descender = to_em(ttf.typographic_descender().unwrap_or(ttf.descender()));
let strikeout = ttf.strikeout_metrics();
let underline = ttf.underline_metrics();
let strikethrough = LineMetrics {
position: strikeout.map_or(Em::new(0.25), |s| to_em(s.position)),
thickness: strikeout
.or(underline)
.map_or(Em::new(0.06), |s| to_em(s.thickness)),
};
let underline = LineMetrics {
position: underline.map_or(Em::new(-0.2), |s| to_em(s.position)),
thickness: underline
.or(strikeout)
.map_or(Em::new(0.06), |s| to_em(s.thickness)),
};
let overline = LineMetrics {
position: cap_height + Em::new(0.1),
thickness: underline.thickness,
};
Self {
units_per_em,
ascender,
cap_height,
x_height,
descender,
strikethrough,
underline,
overline,
}
}
/// Look up a vertical metric at the given font size.
pub fn vertical(&self, metric: VerticalFontMetric) -> Em {
match metric {
VerticalFontMetric::Ascender => self.ascender,
VerticalFontMetric::CapHeight => self.cap_height,
VerticalFontMetric::XHeight => self.x_height,
VerticalFontMetric::Baseline => Em::zero(),
VerticalFontMetric::Descender => self.descender,
}
}
}
/// Metrics for a decorative line.
#[derive(Debug, Copy, Clone)]
pub struct LineMetrics {
/// The vertical offset of the line from the baseline. Positive goes
/// upwards, negative downwards.
pub position: Em,
/// The thickness of the line.
pub thickness: Em,
}
/// Identifies a vertical metric of a font.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
pub enum VerticalFontMetric {
/// The distance from the baseline to the typographic ascender.
///
/// Corresponds to the typographic ascender from the `OS/2` table if present
/// and falls back to the ascender from the `hhea` table otherwise.
Ascender,
/// The approximate height of uppercase letters.
CapHeight,
/// The approximate height of non-ascending lowercase letters.
XHeight,
/// The baseline on which the letters rest.
Baseline,
/// The distance from the baseline to the typographic descender.
///
/// Corresponds to the typographic descender from the `OS/2` table if
/// present and falls back to the descender from the `hhea` table otherwise.
Descender,
}
/// Properties of a single font face.
#[derive(Debug, Clone, Eq, PartialEq, Serialize, Deserialize)]
pub struct FaceInfo {
/// The path to the font file.
pub path: PathBuf,
/// The collection index in the font file.
pub index: u32,
/// The typographic font family this face is part of.
pub family: String,
/// Properties that distinguish this face from other faces in the same
/// family.
pub variant: FontVariant,
/// Whether the face is monospaced.
pub monospaced: bool,
/// Whether the face has serifs (if known).
pub serif: Option<bool>,
/// The unicode coverage of the face.
pub coverage: Coverage,
}
impl FaceInfo {
/// Compute metadata for all faces in the given data.
pub fn from_data<'a>(
path: &'a Path,
data: &'a [u8],
) -> impl Iterator<Item = FaceInfo> + 'a {
let count = ttf_parser::fonts_in_collection(data).unwrap_or(1);
(0 .. count).filter_map(move |index| {
let face = ttf_parser::Face::from_slice(data, index).ok()?;
Self::from_ttf(path, index, &face)
})
}
/// Compute metadata for a single ttf-parser face.
pub fn from_ttf(path: &Path, index: u32, ttf: &ttf_parser::Face) -> Option<Self> {
// We cannot use Name ID 16 "Typographic Family", because for some
// fonts it groups together more than just Style / Weight / Stretch
// variants (e.g. Display variants of Noto fonts) and then some
// variants become inaccessible from Typst. And even though the
// fsSelection bit WWS should help us decide whether that is the
// case, it's wrong for some fonts (e.g. for some faces of "Noto
// Sans Display").
//
// So, instead we use Name ID 1 "Family" and trim many common
// suffixes for which know that they just describe styling (e.g.
// "ExtraBold").
//
// Also, for Noto fonts we use Name ID 4 "Full Name" instead,
// because Name ID 1 "Family" sometimes contains "Display" and
// sometimes doesn't for the Display variants and that mixes things
// up.
let family = {
let mut family = find_name(ttf, name_id::FAMILY)?;
if family.starts_with("Noto") {
family = find_name(ttf, name_id::FULL_NAME)?;
}
trim_styles(&family).to_string()
};
let variant = {
let mut full = find_name(ttf, name_id::FULL_NAME).unwrap_or_default();
full.make_ascii_lowercase();
// Some fonts miss the relevant bits for italic or oblique, so
// we also try to infer that from the full name.
let italic = ttf.is_italic() || full.contains("italic");
let oblique =
ttf.is_oblique() || full.contains("oblique") || full.contains("slanted");
let style = match (italic, oblique) {
(false, false) => FontStyle::Normal,
(true, _) => FontStyle::Italic,
(_, true) => FontStyle::Oblique,
};
let weight = FontWeight::from_number(ttf.weight().to_number());
let stretch = FontStretch::from_number(ttf.width().to_number());
FontVariant { style, weight, stretch }
};
// Determine the unicode coverage.
let mut codepoints = vec![];
for subtable in ttf.character_mapping_subtables() {
if subtable.is_unicode() {
subtable.codepoints(|c| codepoints.push(c));
}
}
// Determine whether this is a serif or sans-serif font.
let mut serif = None;
if let Some(panose) = ttf
.table_data(Tag::from_bytes(b"OS/2"))
.and_then(|os2| os2.get(32 .. 45))
{
match panose {
[2, 2 ..= 10, ..] => serif = Some(true),
[2, 11 ..= 15, ..] => serif = Some(false),
_ => {}
}
}
Some(FaceInfo {
path: path.to_owned(),
index,
family,
variant,
monospaced: ttf.is_monospaced(),
serif,
coverage: Coverage::from_vec(codepoints),
})
}
}
/// Try to find and decode the name with the given id.
pub fn find_name(ttf: &ttf_parser::Face, name_id: u16) -> Option<String> {
ttf.names().find_map(|entry| {
if entry.name_id() == name_id {
if let Some(string) = entry.to_string() {
return Some(string);
}
if entry.platform_id() == PlatformId::Macintosh && entry.encoding_id() == 0 {
return Some(decode_mac_roman(entry.name()));
}
}
None
})
}
/// Trim style naming from a family name.
fn trim_styles(mut family: &str) -> &str {
// Separators between names, modifiers and styles.
const SEPARATORS: [char; 3] = [' ', '-', '_'];
// Modifiers that can appear in combination with suffixes.
const MODIFIERS: &[&str] = &[
"extra", "ext", "ex", "x", "semi", "sem", "sm", "demi", "dem", "ultra",
];
// Style suffixes.
#[rustfmt::skip]
const SUFFIXES: &[&str] = &[
"normal", "italic", "oblique", "slanted",
"thin", "th", "hairline", "light", "lt", "regular", "medium", "med",
"md", "bold", "bd", "demi", "extb", "black", "blk", "bk", "heavy",
"narrow", "condensed", "cond", "cn", "cd", "compressed", "expanded", "exp"
];
// Trim spacing and weird leading dots in Apple fonts.
family = family.trim().trim_start_matches('.');
// Lowercase the string so that the suffixes match case-insensitively.
let lower = family.to_ascii_lowercase();
let mut len = usize::MAX;
let mut trimmed = lower.as_str();
// Trim style suffixes repeatedly.
while trimmed.len() < len {
len = trimmed.len();
// Find style suffix.
let mut t = match SUFFIXES.iter().find_map(|s| trimmed.strip_suffix(s)) {
Some(t) => t,
None => break,
};
// Strip optional separator.
if let Some(s) = t.strip_suffix(SEPARATORS) {
trimmed = s;
t = s;
}
// Also allow an extra modifier, but apply it only if it is separated it
// from the text before it (to prevent false positives).
if let Some(t) = MODIFIERS.iter().find_map(|s| t.strip_suffix(s)) {
if let Some(stripped) = t.strip_suffix(SEPARATORS) {
trimmed = stripped;
}
}
}
&family[.. len]
}
/// Properties that distinguish a face from other faces in the same family.
#[derive(Default, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[derive(Serialize, Deserialize)]
pub struct FontVariant {
/// The style of the face (normal / italic / oblique).
pub style: FontStyle,
/// How heavy the face is (100 - 900).
pub weight: FontWeight,
/// How condensed or expanded the face is (0.5 - 2.0).
pub stretch: FontStretch,
}
impl FontVariant {
/// Create a variant from its three components.
pub fn new(style: FontStyle, weight: FontWeight, stretch: FontStretch) -> Self {
Self { style, weight, stretch }
}
}
impl Debug for FontVariant {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{:?}-{:?}-{:?}", self.style, self.weight, self.stretch)
}
}
/// The style of a font face.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[derive(Serialize, Deserialize)]
#[serde(rename_all = "kebab-case")]
pub enum FontStyle {
/// The default style.
Normal,
/// A cursive style.
Italic,
/// A slanted style.
Oblique,
}
impl FontStyle {
/// The conceptual distance between the styles, expressed as a number.
pub fn distance(self, other: Self) -> u16 {
if self == other {
0
} else if self != Self::Normal && other != Self::Normal {
1
} else {
2
}
}
}
impl Default for FontStyle {
fn default() -> Self {
Self::Normal
}
}
/// The weight of a font face.
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[derive(Serialize, Deserialize)]
#[serde(transparent)]
pub struct FontWeight(u16);
impl FontWeight {
/// Thin weight (100).
pub const THIN: Self = Self(100);
/// Extra light weight (200).
pub const EXTRALIGHT: Self = Self(200);
/// Light weight (300).
pub const LIGHT: Self = Self(300);
/// Regular weight (400).
pub const REGULAR: Self = Self(400);
/// Medium weight (500).
pub const MEDIUM: Self = Self(500);
/// Semibold weight (600).
pub const SEMIBOLD: Self = Self(600);
/// Bold weight (700).
pub const BOLD: Self = Self(700);
/// Extrabold weight (800).
pub const EXTRABOLD: Self = Self(800);
/// Black weight (900).
pub const BLACK: Self = Self(900);
/// Create a font weight from a number between 100 and 900, clamping it if
/// necessary.
pub fn from_number(weight: u16) -> Self {
Self(weight.max(100).min(900))
}
/// The number between 100 and 900.
pub fn to_number(self) -> u16 {
self.0
}
/// Add (or remove) weight, saturating at the boundaries of 100 and 900.
pub fn thicken(self, delta: i16) -> Self {
Self((self.0 as i16).saturating_add(delta).max(100).min(900) as u16)
}
/// The absolute number distance between this and another font weight.
pub fn distance(self, other: Self) -> u16 {
(self.0 as i16 - other.0 as i16).abs() as u16
}
}
impl Default for FontWeight {
fn default() -> Self {
Self::REGULAR
}
}
impl Debug for FontWeight {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
/// The width of a font face.
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[derive(Serialize, Deserialize)]
#[serde(transparent)]
pub struct FontStretch(u16);
impl FontStretch {
/// Ultra-condensed stretch (50%).
pub const ULTRA_CONDENSED: Self = Self(500);
/// Extra-condensed stretch weight (62.5%).
pub const EXTRA_CONDENSED: Self = Self(625);
/// Condensed stretch (75%).
pub const CONDENSED: Self = Self(750);
/// Semi-condensed stretch (87.5%).
pub const SEMI_CONDENSED: Self = Self(875);
/// Normal stretch (100%).
pub const NORMAL: Self = Self(1000);
/// Semi-expanded stretch (112.5%).
pub const SEMI_EXPANDED: Self = Self(1125);
/// Expanded stretch (125%).
pub const EXPANDED: Self = Self(1250);
/// Extra-expanded stretch (150%).
pub const EXTRA_EXPANDED: Self = Self(1500);
/// Ultra-expanded stretch (200%).
pub const ULTRA_EXPANDED: Self = Self(2000);
/// Create a font stretch from a ratio between 0.5 and 2.0, clamping it if
/// necessary.
pub fn from_ratio(ratio: f32) -> Self {
Self((ratio.max(0.5).min(2.0) * 1000.0) as u16)
}
/// Create a font stretch from an OpenType-style number between 1 and 9,
/// clamping it if necessary.
pub fn from_number(stretch: u16) -> Self {
match stretch {
0 | 1 => Self::ULTRA_CONDENSED,
2 => Self::EXTRA_CONDENSED,
3 => Self::CONDENSED,
4 => Self::SEMI_CONDENSED,
5 => Self::NORMAL,
6 => Self::SEMI_EXPANDED,
7 => Self::EXPANDED,
8 => Self::EXTRA_EXPANDED,
_ => Self::ULTRA_EXPANDED,
}
}
/// The ratio between 0.5 and 2.0 corresponding to this stretch.
pub fn to_ratio(self) -> f32 {
self.0 as f32 / 1000.0
}
/// The absolute ratio distance between this and another font stretch.
pub fn distance(self, other: Self) -> f32 {
(self.to_ratio() - other.to_ratio()).abs()
}
}
impl Default for FontStretch {
fn default() -> Self {
Self::NORMAL
}
}
impl Debug for FontStretch {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}%", 100.0 * self.to_ratio())
}
}
/// A compactly encoded set of codepoints.
///
/// The set is represented by alternating specifications of how many codepoints
/// are not in the set and how many are in the set.
///
/// For example, for the set `{2, 3, 4, 9, 10, 11, 15, 18, 19}`, there are:
/// - 2 codepoints not inside (0, 1)
/// - 3 codepoints inside (2, 3, 4)
/// - 4 codepoints not inside (5, 6, 7, 8)
/// - 3 codepoints inside (9, 10, 11)
/// - 3 codepoints not inside (12, 13, 14)
/// - 1 codepoint inside (15)
/// - 2 codepoints not inside (16, 17)
/// - 2 codepoints inside (18, 19)
///
/// So the resulting encoding is `[2, 3, 4, 3, 3, 1, 2, 2]`.
#[derive(Debug, Clone, Eq, PartialEq, Serialize, Deserialize)]
#[serde(transparent)]
pub struct Coverage(Vec<u32>);
impl Coverage {
/// Encode a vector of codepoints.
pub fn from_vec(mut codepoints: Vec<u32>) -> Self {
codepoints.sort();
codepoints.dedup();
let mut runs = Vec::new();
let mut next = 0;
for c in codepoints {
if let Some(run) = runs.last_mut().filter(|_| c == next) {
*run += 1;
} else {
runs.push(c - next);
runs.push(1);
}
next = c + 1;
}
Self(runs)
}
/// Whether the codepoint is covered.
pub fn contains(&self, c: u32) -> bool {
let mut inside = false;
let mut cursor = 0;
for &run in &self.0 {
if (cursor .. cursor + run).contains(&c) {
return inside;
}
cursor += run;
inside = !inside;
}
false
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_font_weight_distance() {
let d = |a, b| FontWeight(a).distance(FontWeight(b));
assert_eq!(d(500, 200), 300);
assert_eq!(d(500, 500), 0);
assert_eq!(d(500, 900), 400);
assert_eq!(d(10, 100), 90);
}
#[test]
fn test_font_stretch_debug() {
assert_eq!(format!("{:?}", FontStretch::EXPANDED), "125%")
}
#[test]
fn test_trim_styles() {
assert_eq!(trim_styles("Atma Light"), "Atma");
assert_eq!(trim_styles("eras bold"), "eras");
assert_eq!(trim_styles("footlight mt light"), "footlight mt");
assert_eq!(trim_styles("times new roman"), "times new roman");
assert_eq!(trim_styles("noto sans mono cond sembd"), "noto sans mono");
assert_eq!(trim_styles("noto serif SEMCOND sembd"), "noto serif");
assert_eq!(trim_styles("crimson text"), "crimson text");
assert_eq!(trim_styles("footlight light"), "footlight");
assert_eq!(trim_styles("Noto Sans"), "Noto Sans");
assert_eq!(trim_styles("Noto Sans Light"), "Noto Sans");
assert_eq!(trim_styles("Noto Sans Semicondensed Heavy"), "Noto Sans");
assert_eq!(trim_styles("Familx"), "Familx");
assert_eq!(trim_styles("Font Ultra"), "Font Ultra");
assert_eq!(trim_styles("Font Ultra Bold"), "Font");
}
#[test]
fn test_coverage() {
#[track_caller]
fn test(set: &[u32], runs: &[u32]) {
let coverage = Coverage::from_vec(set.to_vec());
assert_eq!(coverage.0, runs);
let max = 5 + set.iter().copied().max().unwrap_or_default();
for c in 0 .. max {
assert_eq!(set.contains(&c), coverage.contains(c));
}
}
test(&[], &[]);
test(&[0], &[0, 1]);
test(&[1], &[1, 1]);
test(&[0, 1], &[0, 2]);
test(&[0, 1, 3], &[0, 2, 1, 1]);
test(
// [2, 3, 4, 9, 10, 11, 15, 18, 19]
&[18, 19, 2, 4, 9, 11, 15, 3, 3, 10],
&[2, 3, 4, 3, 3, 1, 2, 2],
)
}
}