typst/src/parse/mod.rs
2020-10-01 11:08:53 +02:00

650 lines
19 KiB
Rust

//! Parsing and tokenization.
mod resolve;
mod scanner;
mod tokens;
pub use resolve::*;
pub use scanner::*;
pub use tokens::*;
use std::str::FromStr;
use super::*;
use crate::color::RgbaColor;
use crate::compute::table::SpannedEntry;
use crate::syntax::*;
use crate::{Feedback, Pass};
/// Parse a string of source code.
pub fn parse(src: &str) -> Pass<SyntaxTree> {
Parser::new(src).parse()
}
struct Parser<'s> {
tokens: Tokens<'s>,
peeked: Option<Option<Spanned<Token<'s>>>>,
delimiters: Vec<(Pos, Token<'static>)>,
at_block_or_line_start: bool,
feedback: Feedback,
}
impl<'s> Parser<'s> {
fn new(src: &'s str) -> Self {
Self {
tokens: Tokens::new(src, TokenMode::Body),
peeked: None,
delimiters: vec![],
at_block_or_line_start: true,
feedback: Feedback::new(),
}
}
fn parse(mut self) -> Pass<SyntaxTree> {
let tree = self.parse_body_contents();
Pass::new(tree, self.feedback)
}
}
// Typesetting content.
impl Parser<'_> {
fn parse_body_contents(&mut self) -> SyntaxTree {
let mut tree = SyntaxTree::new();
self.at_block_or_line_start = true;
while !self.eof() {
if let Some(node) = self.parse_node() {
tree.push(node);
}
}
tree
}
fn parse_node(&mut self) -> Option<Spanned<SyntaxNode>> {
let token = self.peek()?;
let end = Span::at(token.span.end);
// Set block or line start to false because most nodes have that effect, but
// remember the old value to actually check it for hashtags and because comments
// and spaces want to retain it.
let was_at_block_or_line_start = self.at_block_or_line_start;
self.at_block_or_line_start = false;
Some(match token.v {
// Starting from two newlines counts as a paragraph break, a single
// newline does not.
Token::Space(n) => {
if n == 0 {
self.at_block_or_line_start = was_at_block_or_line_start;
} else if n >= 1 {
self.at_block_or_line_start = true;
}
self.with_span(if n >= 2 {
SyntaxNode::Parbreak
} else {
SyntaxNode::Spacing
})
}
Token::LineComment(_) | Token::BlockComment(_) => {
self.at_block_or_line_start = was_at_block_or_line_start;
self.eat();
return None;
}
Token::LeftBracket => {
let call = self.parse_bracket_call(false);
self.at_block_or_line_start = false;
call.map(SyntaxNode::Call)
}
Token::Star => self.with_span(SyntaxNode::ToggleBolder),
Token::Underscore => self.with_span(SyntaxNode::ToggleItalic),
Token::Backslash => self.with_span(SyntaxNode::Linebreak),
Token::Hashtag if was_at_block_or_line_start => {
self.parse_heading().map(SyntaxNode::Heading)
}
Token::Raw { raw, backticks, terminated } => {
if !terminated {
error!(@self.feedback, end, "expected backtick(s)");
}
let raw = resolve::resolve_raw(raw, backticks);
self.with_span(SyntaxNode::Raw(raw))
}
Token::Text(text) => self.with_span(SyntaxNode::Text(text.to_string())),
Token::Hashtag => self.with_span(SyntaxNode::Text("#".to_string())),
Token::UnicodeEscape { sequence, terminated } => {
if !terminated {
error!(@self.feedback, end, "expected closing brace");
}
if let Some(c) = resolve::resolve_hex(sequence) {
self.with_span(SyntaxNode::Text(c.to_string()))
} else {
error!(@self.feedback, token.span, "invalid unicode escape sequence");
// TODO: Decide whether to render the escape sequence.
self.eat();
return None;
}
}
unexpected => {
error!(@self.feedback, token.span, "unexpected {}", unexpected.name());
self.eat();
return None;
}
})
}
fn parse_heading(&mut self) -> Spanned<Heading> {
let start = self.pos();
self.assert(Token::Hashtag);
let mut level = 0;
while self.peekv() == Some(Token::Hashtag) {
level += 1;
self.eat();
}
let span = Span::new(start, self.pos());
let level = level.span_with(span);
if level.v > 5 {
warning!(
@self.feedback, level.span,
"section depth larger than 6 has no effect",
);
}
self.skip_ws();
let mut tree = SyntaxTree::new();
while !self.eof() && !matches!(self.peekv(), Some(Token::Space(n)) if n >= 1) {
if let Some(node) = self.parse_node() {
tree.push(node);
}
}
let span = Span::new(start, self.pos());
Heading { level, tree }.span_with(span)
}
}
// Function calls.
impl Parser<'_> {
fn parse_bracket_call(&mut self, chained: bool) -> Spanned<CallExpr> {
let before_bracket = self.pos();
if !chained {
self.start_group(Group::Bracket);
self.tokens.push_mode(TokenMode::Header);
}
let before_name = self.pos();
self.start_group(Group::Subheader);
self.skip_ws();
let name = self.parse_ident().unwrap_or_else(|| {
self.expected_found_or_at("function name", before_name);
Ident(String::new()).span_with(Span::at(before_name))
});
self.skip_ws();
let mut args = match self.eatv() {
Some(Token::Colon) => self.parse_table_contents().0,
Some(_) => {
self.expected_at("colon", name.span.end);
while self.eat().is_some() {}
TableExpr::new()
}
None => TableExpr::new(),
};
self.end_group();
self.skip_ws();
let (has_chained_child, end) = if self.peek().is_some() {
let item = self.parse_bracket_call(true);
let span = item.span;
let t = vec![item.map(SyntaxNode::Call)];
args.push(SpannedEntry::val(Expr::Tree(t).span_with(span)));
(true, span.end)
} else {
self.tokens.pop_mode();
(false, self.end_group().end)
};
let start = if chained { before_name } else { before_bracket };
let mut span = Span::new(start, end);
if self.check(Token::LeftBracket) && !has_chained_child {
self.start_group(Group::Bracket);
self.tokens.push_mode(TokenMode::Body);
let body = self.parse_body_contents();
self.tokens.pop_mode();
let body_span = self.end_group();
let expr = Expr::Tree(body);
args.push(SpannedEntry::val(expr.span_with(body_span)));
span.expand(body_span);
}
CallExpr { name, args }.span_with(span)
}
fn parse_paren_call(&mut self, name: Spanned<Ident>) -> Spanned<CallExpr> {
self.start_group(Group::Paren);
let args = self.parse_table_contents().0;
let args_span = self.end_group();
let span = Span::merge(name.span, args_span);
CallExpr { name, args }.span_with(span)
}
}
// Tables.
impl Parser<'_> {
fn parse_table_contents(&mut self) -> (TableExpr, bool) {
let mut table = TableExpr::new();
let mut comma_and_keyless = true;
while {
self.skip_ws();
!self.eof()
} {
let (key, val) = if let Some(ident) = self.parse_ident() {
self.skip_ws();
match self.peekv() {
Some(Token::Equals) => {
self.eat();
self.skip_ws();
if let Some(value) = self.parse_expr() {
(Some(ident), value)
} else {
self.expected("value");
continue;
}
}
Some(Token::LeftParen) => {
let call = self.parse_paren_call(ident);
(None, call.map(Expr::Call))
}
_ => (None, ident.map(Expr::Ident)),
}
} else if let Some(value) = self.parse_expr() {
(None, value)
} else {
self.expected("value");
continue;
};
let behind = val.span.end;
if let Some(key) = key {
comma_and_keyless = false;
table.insert(key.v.0, SpannedEntry::new(key.span, val));
self.feedback
.decorations
.push(Decoration::TableKey.span_with(key.span));
} else {
table.push(SpannedEntry::val(val));
}
if {
self.skip_ws();
self.eof()
} {
break;
}
self.expect_at(Token::Comma, behind);
comma_and_keyless = false;
}
let coercable = comma_and_keyless && !table.is_empty();
(table, coercable)
}
}
type Binop = fn(Box<Spanned<Expr>>, Box<Spanned<Expr>>) -> Expr;
// Expressions and values.
impl Parser<'_> {
fn parse_expr(&mut self) -> Option<Spanned<Expr>> {
self.parse_binops("summand", Self::parse_term, |token| match token {
Token::Plus => Some(Expr::Add),
Token::Hyphen => Some(Expr::Sub),
_ => None,
})
}
fn parse_term(&mut self) -> Option<Spanned<Expr>> {
self.parse_binops("factor", Self::parse_factor, |token| match token {
Token::Star => Some(Expr::Mul),
Token::Slash => Some(Expr::Div),
_ => None,
})
}
/// Parse expression of the form `<operand> (<op> <operand>)*`.
fn parse_binops(
&mut self,
operand_name: &str,
mut parse_operand: impl FnMut(&mut Self) -> Option<Spanned<Expr>>,
mut parse_op: impl FnMut(Token) -> Option<Binop>,
) -> Option<Spanned<Expr>> {
let mut left = parse_operand(self)?;
self.skip_ws();
while let Some(token) = self.peek() {
if let Some(op) = parse_op(token.v) {
self.eat();
self.skip_ws();
if let Some(right) = parse_operand(self) {
let span = Span::merge(left.span, right.span);
let v = op(Box::new(left), Box::new(right));
left = v.span_with(span);
self.skip_ws();
continue;
}
error!(
@self.feedback, Span::merge(left.span, token.span),
"missing right {}", operand_name,
);
}
break;
}
Some(left)
}
fn parse_factor(&mut self) -> Option<Spanned<Expr>> {
if let Some(hyph) = self.check_eat(Token::Hyphen) {
self.skip_ws();
if let Some(factor) = self.parse_factor() {
let span = Span::merge(hyph.span, factor.span);
Some(Expr::Neg(Box::new(factor)).span_with(span))
} else {
error!(@self.feedback, hyph.span, "dangling minus");
None
}
} else {
self.parse_value()
}
}
fn parse_value(&mut self) -> Option<Spanned<Expr>> {
let Spanned { v: token, span } = self.peek()?;
Some(match token {
// This could be a function call or an identifier.
Token::Ident(id) => {
let name = Ident(id.to_string()).span_with(span);
self.eat();
self.skip_ws();
if self.check(Token::LeftParen) {
self.parse_paren_call(name).map(Expr::Call)
} else {
name.map(Expr::Ident)
}
}
Token::Str { string, terminated } => {
if !terminated {
self.expected_at("quote", span.end);
}
self.with_span(Expr::Str(resolve::resolve_string(string)))
}
Token::Bool(b) => self.with_span(Expr::Bool(b)),
Token::Number(n) => self.with_span(Expr::Number(n)),
Token::Length(s) => self.with_span(Expr::Length(s)),
Token::Hex(s) => {
if let Ok(color) = RgbaColor::from_str(s) {
self.with_span(Expr::Color(color))
} else {
// Heal color by assuming black.
error!(@self.feedback, span, "invalid color");
let healed = RgbaColor::new_healed(0, 0, 0, 255);
self.with_span(Expr::Color(healed))
}
}
// This could be a table or a parenthesized expression. We parse as
// a table in any case and coerce the table into a value if it is
// coercable (length 1 and no trailing comma).
Token::LeftParen => {
self.start_group(Group::Paren);
let (table, coercable) = self.parse_table_contents();
let span = self.end_group();
let expr = if coercable {
table.into_values().next().expect("table is coercable").val.v
} else {
Expr::Table(table)
};
expr.span_with(span)
}
// This is a content expression.
Token::LeftBrace => {
self.start_group(Group::Brace);
self.tokens.push_mode(TokenMode::Body);
let tree = self.parse_body_contents();
self.tokens.pop_mode();
let span = self.end_group();
Expr::Tree(tree).span_with(span)
}
// This is a bracketed function call.
Token::LeftBracket => {
let call = self.parse_bracket_call(false);
let tree = vec![call.map(SyntaxNode::Call)];
Expr::Tree(tree).span_with(span)
}
_ => return None,
})
}
fn parse_ident(&mut self) -> Option<Spanned<Ident>> {
self.peek().and_then(|token| match token.v {
Token::Ident(id) => Some(self.with_span(Ident(id.to_string()))),
_ => None,
})
}
}
// Error handling.
impl Parser<'_> {
fn expect_at(&mut self, token: Token<'_>, pos: Pos) -> bool {
if self.check(token) {
self.eat();
true
} else {
self.expected_at(token.name(), pos);
false
}
}
fn expected(&mut self, thing: &str) {
if let Some(found) = self.eat() {
error!(
@self.feedback, found.span,
"expected {}, found {}", thing, found.v.name(),
);
} else {
error!(@self.feedback, Span::at(self.pos()), "expected {}", thing);
}
}
fn expected_at(&mut self, thing: &str, pos: Pos) {
error!(@self.feedback, Span::at(pos), "expected {}", thing);
}
fn expected_found_or_at(&mut self, thing: &str, pos: Pos) {
if self.eof() {
self.expected_at(thing, pos)
} else {
self.expected(thing);
}
}
}
// Parsing primitives.
impl<'s> Parser<'s> {
fn start_group(&mut self, group: Group) {
let start = self.pos();
if let Some(start_token) = group.start() {
self.assert(start_token);
}
self.delimiters.push((start, group.end()));
}
fn end_group(&mut self) -> Span {
let peeked = self.peek();
let (start, end_token) = self.delimiters.pop().expect("group was not started");
if end_token != Token::Chain && peeked != None {
self.delimiters.push((start, end_token));
assert_eq!(peeked, None, "unfinished group");
}
match self.peeked.unwrap() {
Some(token) if token.v == end_token => {
self.peeked = None;
Span::new(start, token.span.end)
}
_ => {
let end = self.pos();
if end_token != Token::Chain {
error!(
@self.feedback, Span::at(end),
"expected {}", end_token.name(),
);
}
Span::new(start, end)
}
}
}
fn skip_ws(&mut self) {
while matches!(
self.peekv(),
Some(Token::Space(_)) |
Some(Token::LineComment(_)) |
Some(Token::BlockComment(_))
) {
self.eat();
}
}
fn eatv(&mut self) -> Option<Token<'s>> {
self.eat().map(Spanned::value)
}
fn peekv(&mut self) -> Option<Token<'s>> {
self.peek().map(Spanned::value)
}
fn assert(&mut self, token: Token<'_>) {
assert!(self.check_eat(token).is_some());
}
fn check_eat(&mut self, token: Token<'_>) -> Option<Spanned<Token<'s>>> {
if self.check(token) { self.eat() } else { None }
}
/// Checks if the next token is of some kind
fn check(&mut self, token: Token<'_>) -> bool {
self.peekv() == Some(token)
}
fn with_span<T>(&mut self, v: T) -> Spanned<T> {
let span = self.eat().expect("expected token").span;
v.span_with(span)
}
fn eof(&mut self) -> bool {
self.peek().is_none()
}
fn eat(&mut self) -> Option<Spanned<Token<'s>>> {
let token = self.peek()?;
self.peeked = None;
Some(token)
}
fn peek(&mut self) -> Option<Spanned<Token<'s>>> {
let tokens = &mut self.tokens;
let token = (*self.peeked.get_or_insert_with(|| tokens.next()))?;
// Check for unclosed groups.
if Group::is_delimiter(token.v) {
if self.delimiters.iter().rev().any(|&(_, end)| token.v == end) {
return None;
}
}
Some(token)
}
fn pos(&self) -> Pos {
self.peeked
.flatten()
.map(|s| s.span.start)
.unwrap_or_else(|| self.tokens.pos())
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
enum Group {
Paren,
Bracket,
Brace,
Subheader,
}
impl Group {
fn is_delimiter(token: Token<'_>) -> bool {
matches!(
token,
Token::RightParen | Token::RightBracket | Token::RightBrace | Token::Chain
)
}
fn start(self) -> Option<Token<'static>> {
match self {
Self::Paren => Some(Token::LeftParen),
Self::Bracket => Some(Token::LeftBracket),
Self::Brace => Some(Token::LeftBrace),
Self::Subheader => None,
}
}
fn end(self) -> Token<'static> {
match self {
Self::Paren => Token::RightParen,
Self::Bracket => Token::RightBracket,
Self::Brace => Token::RightBrace,
Self::Subheader => Token::Chain,
}
}
}
#[cfg(test)]
mod tests;