2023-08-07 15:58:16 +02:00

859 lines
22 KiB
Rust

use std::num::NonZeroI64;
use std::str::FromStr;
use time::{Month, PrimitiveDateTime};
use typst::eval::{Bytes, Datetime, Module, Reflect, Regex};
use crate::prelude::*;
/// Converts a value to an integer.
///
/// - Booleans are converted to `0` or `1`.
/// - Floats are floored to the next 64-bit integer.
/// - Strings are parsed in base 10.
///
/// ## Example { #example }
/// ```example
/// #int(false) \
/// #int(true) \
/// #int(2.7) \
/// #{ int("27") + int("4") }
/// ```
///
/// Display: Integer
/// Category: construct
#[func]
pub fn int(
/// The value that should be converted to an integer.
value: ToInt,
) -> i64 {
value.0
}
/// A value that can be cast to an integer.
pub struct ToInt(i64);
cast! {
ToInt,
v: bool => Self(v as i64),
v: f64 => Self(v as i64),
v: EcoString => Self(v.parse().map_err(|_| eco_format!("invalid integer: {}", v))?),
v: i64 => Self(v),
}
/// Converts a value to a float.
///
/// - Booleans are converted to `0.0` or `1.0`.
/// - Integers are converted to the closest 64-bit float.
/// - Ratios are divided by 100%.
/// - Strings are parsed in base 10 to the closest 64-bit float.
/// Exponential notation is supported.
///
/// ## Example { #example }
/// ```example
/// #float(false) \
/// #float(true) \
/// #float(4) \
/// #float(40%) \
/// #float("2.7") \
/// #float("1e5")
/// ```
///
/// Display: Float
/// Category: construct
#[func]
pub fn float(
/// The value that should be converted to a float.
value: ToFloat,
) -> f64 {
value.0
}
/// A value that can be cast to a float.
pub struct ToFloat(f64);
cast! {
ToFloat,
v: bool => Self(v as i64 as f64),
v: i64 => Self(v as f64),
v: Ratio => Self(v.get()),
v: EcoString => Self(v.parse().map_err(|_| eco_format!("invalid float: {}", v))?),
v: f64 => Self(v),
}
/// Creates a grayscale color.
///
/// ## Example { #example }
/// ```example
/// #for x in range(250, step: 50) {
/// box(square(fill: luma(x)))
/// }
/// ```
///
/// Display: Luma
/// Category: construct
#[func]
pub fn luma(
/// The gray component.
gray: Component,
) -> Color {
LumaColor::new(gray.0).into()
}
/// Creates an RGB(A) color.
///
/// The color is specified in the sRGB color space.
///
/// ## Example { #example }
/// ```example
/// #square(fill: rgb("#b1f2eb"))
/// #square(fill: rgb(87, 127, 230))
/// #square(fill: rgb(25%, 13%, 65%))
/// ```
///
/// Display: RGB
/// Category: construct
#[func]
pub fn rgb(
/// The color in hexadecimal notation.
///
/// Accepts three, four, six or eight hexadecimal digits and optionally
/// a leading hashtag.
///
/// If this string is given, the individual components should not be given.
///
/// ```example
/// #text(16pt, rgb("#239dad"))[
/// *Typst*
/// ]
/// ```
#[external]
hex: EcoString,
/// The red component.
#[external]
red: Component,
/// The green component.
#[external]
green: Component,
/// The blue component.
#[external]
blue: Component,
/// The alpha component.
#[external]
alpha: Component,
/// The arguments.
args: Args,
) -> SourceResult<Color> {
let mut args = args;
Ok(if let Some(string) = args.find::<Spanned<EcoString>>()? {
match RgbaColor::from_str(&string.v) {
Ok(color) => color.into(),
Err(msg) => bail!(string.span, "{msg}"),
}
} else {
let Component(r) = args.expect("red component")?;
let Component(g) = args.expect("green component")?;
let Component(b) = args.expect("blue component")?;
let Component(a) = args.eat()?.unwrap_or(Component(255));
RgbaColor::new(r, g, b, a).into()
})
}
/// An integer or ratio component.
pub struct Component(u8);
cast! {
Component,
v: i64 => match v {
0 ..= 255 => Self(v as u8),
_ => bail!("number must be between 0 and 255"),
},
v: Ratio => if (0.0 ..= 1.0).contains(&v.get()) {
Self((v.get() * 255.0).round() as u8)
} else {
bail!("ratio must be between 0% and 100%");
},
}
/// Creates a new datetime.
///
/// You can specify the [datetime]($type/datetime) using a year, month, day,
/// hour, minute, and second. You can also get the current date with
/// [`datetime.today`]($func/datetime.today).
///
/// ## Example
/// ```example
/// #let date = datetime(
/// year: 2012,
/// month: 8,
/// day: 3,
/// )
///
/// #date.display() \
/// #date.display(
/// "[day].[month].[year]"
/// )
/// ```
///
/// ## Format
/// _Note_: Depending on which components of the datetime you specify, Typst
/// will store it in one of the following three ways:
/// * If you specify year, month and day, Typst will store just a date.
/// * If you specify hour, minute and second, Typst will store just a time.
/// * If you specify all of year, month, day, hour, minute and second, Typst
/// will store a full datetime.
///
/// Depending on how it is stored, the [`display`]($type/datetime.display)
/// method will choose a different formatting by default.
///
/// Display: Datetime
/// Category: construct
#[func]
#[scope(
scope.define("today", datetime_today_func());
scope
)]
pub fn datetime(
/// The year of the datetime.
#[named]
year: Option<YearComponent>,
/// The month of the datetime.
#[named]
month: Option<MonthComponent>,
/// The day of the datetime.
#[named]
day: Option<DayComponent>,
/// The hour of the datetime.
#[named]
hour: Option<HourComponent>,
/// The minute of the datetime.
#[named]
minute: Option<MinuteComponent>,
/// The second of the datetime.
#[named]
second: Option<SecondComponent>,
) -> StrResult<Datetime> {
let time = match (hour, minute, second) {
(Some(hour), Some(minute), Some(second)) => {
match time::Time::from_hms(hour.0, minute.0, second.0) {
Ok(time) => Some(time),
Err(_) => bail!("time is invalid"),
}
}
(None, None, None) => None,
_ => bail!("time is incomplete"),
};
let date = match (year, month, day) {
(Some(year), Some(month), Some(day)) => {
match time::Date::from_calendar_date(year.0, month.0, day.0) {
Ok(date) => Some(date),
Err(_) => bail!("date is invalid"),
}
}
(None, None, None) => None,
_ => bail!("date is incomplete"),
};
Ok(match (date, time) {
(Some(date), Some(time)) => {
Datetime::Datetime(PrimitiveDateTime::new(date, time))
}
(Some(date), None) => Datetime::Date(date),
(None, Some(time)) => Datetime::Time(time),
(None, None) => {
bail!("at least one of date or time must be fully specified")
}
})
}
pub struct YearComponent(i32);
pub struct MonthComponent(Month);
pub struct DayComponent(u8);
pub struct HourComponent(u8);
pub struct MinuteComponent(u8);
pub struct SecondComponent(u8);
cast! {
YearComponent,
v: i32 => Self(v),
}
cast! {
MonthComponent,
v: u8 => Self(Month::try_from(v).map_err(|_| "month is invalid")?)
}
cast! {
DayComponent,
v: u8 => Self(v),
}
cast! {
HourComponent,
v: u8 => Self(v),
}
cast! {
MinuteComponent,
v: u8 => Self(v),
}
cast! {
SecondComponent,
v: u8 => Self(v),
}
/// Returns the current date.
///
/// Refer to the documentation of the [`display`]($type/datetime.display) method
/// for details on how to affect the formatting of the date.
///
/// ## Example
/// ```example
/// Today's date is
/// #datetime.today().display().
/// ```
///
/// Display: Today
/// Category: construct
#[func]
pub fn datetime_today(
/// An offset to apply to the current UTC date. If set to `{auto}`, the
/// offset will be the local offset.
#[named]
#[default]
offset: Smart<i64>,
/// The virtual machine.
vt: &mut Vt,
) -> StrResult<Datetime> {
Ok(vt
.world
.today(offset.as_custom())
.ok_or("unable to get the current date")?)
}
/// Creates a CMYK color.
///
/// This is useful if you want to target a specific printer. The conversion
/// to RGB for display preview might differ from how your printer reproduces
/// the color.
///
/// ## Example { #example }
/// ```example
/// #square(
/// fill: cmyk(27%, 0%, 3%, 5%)
/// )
/// ```
///
/// Display: CMYK
/// Category: construct
#[func]
pub fn cmyk(
/// The cyan component.
cyan: RatioComponent,
/// The magenta component.
magenta: RatioComponent,
/// The yellow component.
yellow: RatioComponent,
/// The key component.
key: RatioComponent,
) -> Color {
CmykColor::new(cyan.0, magenta.0, yellow.0, key.0).into()
}
/// A component that must be a ratio.
pub struct RatioComponent(u8);
cast! {
RatioComponent,
v: Ratio => if (0.0 ..= 1.0).contains(&v.get()) {
Self((v.get() * 255.0).round() as u8)
} else {
bail!("ratio must be between 0% and 100%");
},
}
/// A module with functions operating on colors.
pub fn color_module() -> Module {
let mut scope = Scope::new();
scope.define("mix", mix_func());
Module::new("color").with_scope(scope)
}
/// Create a color by mixing two or more colors.
///
/// ## Example { #example }
/// ```example
/// #set block(height: 20pt, width: 100%)
/// #block(fill: color.mix(red, blue))
/// #block(fill: color.mix(red, blue, space: "srgb"))
/// #block(fill: color.mix((red, 70%), (blue, 30%)))
/// #block(fill: color.mix(red, blue, white))
/// ```
///
/// _Note:_ This function must be specified as `color.mix`, not just `mix`.
/// Currently, `color` is a module, but it is designed to be forward compatible
/// with a future `color` type.
///
/// Display: Mix
/// Category: construct
#[func]
pub fn mix(
/// The colors, optionally with weights, specified as a pair (array of
/// length two) of color and weight (float or ratio).
///
/// The weights do not need to add to `{100%}`, they are relative to the
/// sum of all weights.
#[variadic]
colors: Vec<WeightedColor>,
/// The color space to mix in. By default, this happens in a perceptual
/// color space (Oklab).
#[named]
#[default(ColorSpace::Oklab)]
space: ColorSpace,
) -> StrResult<Color> {
Color::mix(colors, space)
}
/// Creates a custom symbol with modifiers.
///
/// ## Example { #example }
/// ```example
/// #let envelope = symbol(
/// "🖂",
/// ("stamped", "🖃"),
/// ("stamped.pen", "🖆"),
/// ("lightning", "🖄"),
/// ("fly", "🖅"),
/// )
///
/// #envelope
/// #envelope.stamped
/// #envelope.stamped.pen
/// #envelope.lightning
/// #envelope.fly
/// ```
///
/// Display: Symbol
/// Category: construct
#[func]
pub fn symbol(
/// The variants of the symbol.
///
/// Can be a just a string consisting of a single character for the
/// modifierless variant or an array with two strings specifying the modifiers
/// and the symbol. Individual modifiers should be separated by dots. When
/// displaying a symbol, Typst selects the first from the variants that have
/// all attached modifiers and the minimum number of other modifiers.
#[variadic]
variants: Vec<Spanned<Variant>>,
/// The callsite span.
span: Span,
) -> SourceResult<Symbol> {
let mut list = Vec::new();
if variants.is_empty() {
bail!(span, "expected at least one variant");
}
for Spanned { v, span } in variants {
if list.iter().any(|(prev, _)| &v.0 == prev) {
bail!(span, "duplicate variant");
}
list.push((v.0, v.1));
}
Ok(Symbol::runtime(list.into_boxed_slice()))
}
/// A value that can be cast to a symbol.
pub struct Variant(EcoString, char);
cast! {
Variant,
c: char => Self(EcoString::new(), c),
array: Array => {
let mut iter = array.into_iter();
match (iter.next(), iter.next(), iter.next()) {
(Some(a), Some(b), None) => Self(a.cast()?, b.cast()?),
_ => bail!("point array must contain exactly two entries"),
}
},
}
/// Converts a value to a string.
///
/// - Integers are formatted in base 10. This can be overridden with the
/// optional `base` parameter.
/// - Floats are formatted in base 10 and never in exponential notation.
/// - From labels the name is extracted.
/// - Bytes are decoded as UTF-8.
///
/// If you wish to convert from and to Unicode code points, see
/// [`str.to-unicode`]($func/str.to-unicode) and
/// [`str.from-unicode`]($func/str.from-unicode).
///
/// ## Example { #example }
/// ```example
/// #str(10) \
/// #str(4000, base: 16) \
/// #str(2.7) \
/// #str(1e8) \
/// #str(<intro>)
/// ```
///
/// Display: String
/// Category: construct
#[func]
#[scope(
scope.define("to-unicode", str_to_unicode_func());
scope.define("from-unicode", str_from_unicode_func());
scope
)]
pub fn str(
/// The value that should be converted to a string.
value: ToStr,
/// The base (radix) to display integers in, between 2 and 36.
#[named]
#[default(Spanned::new(10, Span::detached()))]
base: Spanned<i64>,
) -> SourceResult<Str> {
Ok(match value {
ToStr::Str(s) => {
if base.v != 10 {
bail!(base.span, "base is only supported for integers");
}
s
}
ToStr::Int(n) => {
if base.v < 2 || base.v > 36 {
bail!(base.span, "base must be between 2 and 36");
}
int_to_base(n, base.v).into()
}
})
}
/// A value that can be cast to a string.
pub enum ToStr {
/// A string value ready to be used as-is.
Str(Str),
/// An integer about to be formatted in a given base.
Int(i64),
}
cast! {
ToStr,
v: i64 => Self::Int(v),
v: f64 => Self::Str(format_str!("{}", v)),
v: Label => Self::Str(v.0.into()),
v: Bytes => Self::Str(
std::str::from_utf8(&v)
.map_err(|_| "bytes are not valid utf-8")?
.into()
),
v: Str => Self::Str(v),
}
/// Format an integer in a base.
fn int_to_base(mut n: i64, base: i64) -> EcoString {
if n == 0 {
return "0".into();
}
// In Rust, `format!("{:x}", -14i64)` is not `-e` but `fffffffffffffff2`.
// So we can only use the built-in for decimal, not bin/oct/hex.
if base == 10 {
return eco_format!("{n}");
}
// The largest output is `to_base(i64::MIN, 2)`, which is 65 chars long.
const SIZE: usize = 65;
let mut digits = [b'\0'; SIZE];
let mut i = SIZE;
// It's tempting to take the absolute value, but this will fail for i64::MIN.
// Instead, we turn n negative, as -i64::MAX is perfectly representable.
let negative = n < 0;
if n > 0 {
n = -n;
}
while n != 0 {
let digit = char::from_digit(-(n % base) as u32, base as u32);
i -= 1;
digits[i] = digit.unwrap_or('?') as u8;
n /= base;
}
if negative {
i -= 1;
digits[i] = b'-';
}
std::str::from_utf8(&digits[i..]).unwrap_or_default().into()
}
/// Converts a character into its corresponding code point.
///
/// ## Example
/// ```example
/// #str.to-unicode("a") \
/// #"a\u{0300}".codepoints().map(str.to-unicode)
/// ```
///
/// Display: String To Unicode
/// Category: construct
#[func]
pub fn str_to_unicode(
/// The character that should be converted.
value: char,
) -> u32 {
value.into()
}
/// Converts a Unicode code point into its corresponding string.
///
/// ```example
/// #str.from-unicode(97)
/// ```
///
/// Display: String From Unicode
/// Category: construct
#[func]
pub fn str_from_unicode(
/// The code point that should be converted.
value: CodePoint,
) -> Str {
format_str!("{}", value.0)
}
/// The numeric representation of a single unicode code point.
pub struct CodePoint(char);
cast! {
CodePoint,
v: i64 => {
Self(v.try_into().ok().and_then(|v: u32| v.try_into().ok()).ok_or_else(
|| eco_format!("{:#x} is not a valid codepoint", v),
)?)
},
}
/// Creates a regular expression from a string.
///
/// The result can be used as a
/// [show rule selector]($styling/#show-rules) and with
/// [string methods]($type/string) like `find`, `split`, and `replace`.
///
/// See [the specification of the supported syntax](https://docs.rs/regex/latest/regex/#syntax).
///
/// ## Example { #example }
/// ```example
/// // Works with show rules.
/// #show regex("\d+"): set text(red)
///
/// The numbers 1 to 10.
///
/// // Works with string methods.
/// #("a,b;c"
/// .split(regex("[,;]")))
/// ```
///
/// Display: Regex
/// Category: construct
#[func]
pub fn regex(
/// The regular expression as a string.
///
/// Most regex escape sequences just work because they are not valid Typst
/// escape sequences. To produce regex escape sequences that are also valid in
/// Typst (e.g. `[\\]`), you need to escape twice. Thus, to match a verbatim
/// backslash, you would need to write `{regex("\\\\")}`.
///
/// If you need many escape sequences, you can also create a raw element
/// and extract its text to use it for your regular expressions:
/// ```{regex(`\d+\.\d+\.\d+`.text)}```.
regex: Spanned<EcoString>,
) -> SourceResult<Regex> {
Regex::new(&regex.v).at(regex.span)
}
/// Converts a value to bytes.
///
/// - Strings are encoded in UTF-8.
/// - Arrays of integers between `{0}` and `{255}` are converted directly. The
/// dedicated byte representation is much more efficient than the array
/// representation and thus typically used for large byte buffers (e.g. image
/// data).
///
/// ```example
/// #bytes("Hello 😃") \
/// #bytes((123, 160, 22, 0))
/// ```
///
/// Display: Bytes
/// Category: construct
#[func]
pub fn bytes(
/// The value that should be converted to a string.
value: ToBytes,
) -> Bytes {
value.0
}
/// A value that can be cast to bytes.
pub struct ToBytes(Bytes);
cast! {
ToBytes,
v: Str => Self(v.as_bytes().into()),
v: Array => Self(v.iter()
.map(|v| match v {
Value::Int(byte @ 0..=255) => Ok(*byte as u8),
Value::Int(_) => bail!("number must be between 0 and 255"),
value => Err(<u8 as Reflect>::error(value)),
})
.collect::<Result<Vec<u8>, _>>()?
.into()
),
v: Bytes => Self(v),
}
/// Creates a label from a string.
///
/// Inserting a label into content attaches it to the closest previous element
/// that is not a space. Then, the element can be [referenced]($func/ref) and
/// styled through the label.
///
/// ## Example { #example }
/// ```example
/// #show <a>: set text(blue)
/// #show label("b"): set text(red)
///
/// = Heading <a>
/// *Strong* #label("b")
/// ```
///
/// ## Syntax { #syntax }
/// This function also has dedicated syntax: You can create a label by enclosing
/// its name in angle brackets. This works both in markup and code.
///
/// Display: Label
/// Category: construct
#[func]
pub fn label(
/// The name of the label.
name: EcoString,
) -> Label {
Label(name)
}
/// Converts a value to an array.
///
/// Note that this function is only intended for conversion of a collection-like
/// value to an array, not for creation of an array from individual items. Use
/// the array syntax `(1, 2, 3)` (or `(1,)` for a single-element array) instead.
///
/// ```example
/// #let hi = "Hello 😃"
/// #array(bytes(hi))
/// ```
///
/// Display: Array
/// Category: construct
#[func]
pub fn array(
/// The value that should be converted to an array.
value: ToArray,
) -> Array {
value.0
}
/// A value that can be cast to bytes.
pub struct ToArray(Array);
cast! {
ToArray,
v: Bytes => Self(v.iter().map(|&b| Value::Int(b as i64)).collect()),
v: Array => Self(v),
}
/// Creates an array consisting of consecutive integers.
///
/// If you pass just one positional parameter, it is interpreted as the `end` of
/// the range. If you pass two, they describe the `start` and `end` of the
/// range.
///
/// ## Example { #example }
/// ```example
/// #range(5) \
/// #range(2, 5) \
/// #range(20, step: 4) \
/// #range(21, step: 4) \
/// #range(5, 2, step: -1)
/// ```
///
/// Display: Range
/// Category: construct
#[func]
pub fn range(
/// The start of the range (inclusive).
#[external]
#[default]
start: i64,
/// The end of the range (exclusive).
#[external]
end: i64,
/// The distance between the generated numbers.
#[named]
#[default(NonZeroI64::new(1).unwrap())]
step: NonZeroI64,
/// The arguments.
args: Args,
) -> SourceResult<Array> {
let mut args = args;
let first = args.expect::<i64>("end")?;
let (start, end) = match args.eat::<i64>()? {
Some(second) => (first, second),
None => (0, first),
};
let step = step.get();
let mut x = start;
let mut array = Array::new();
while x.cmp(&end) == 0.cmp(&step) {
array.push(Value::Int(x));
x += step;
}
Ok(array)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_to_base() {
assert_eq!(&int_to_base(0, 10), "0");
assert_eq!(&int_to_base(0, 16), "0");
assert_eq!(&int_to_base(0, 36), "0");
assert_eq!(
&int_to_base(i64::MAX, 2),
"111111111111111111111111111111111111111111111111111111111111111"
);
assert_eq!(
&int_to_base(i64::MIN, 2),
"-1000000000000000000000000000000000000000000000000000000000000000"
);
assert_eq!(&int_to_base(i64::MAX, 10), "9223372036854775807");
assert_eq!(&int_to_base(i64::MIN, 10), "-9223372036854775808");
assert_eq!(&int_to_base(i64::MAX, 16), "7fffffffffffffff");
assert_eq!(&int_to_base(i64::MIN, 16), "-8000000000000000");
assert_eq!(&int_to_base(i64::MAX, 36), "1y2p0ij32e8e7");
assert_eq!(&int_to_base(i64::MIN, 36), "-1y2p0ij32e8e8");
}
}