use super::*; /// A relative length. /// /// _Note_: `50%` is represented as `0.5` here, but stored as `50.0` in the /// corresponding [literal](crate::syntax::Lit::Percent). #[derive(Default, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)] pub struct Relative(N64); impl Relative { /// A ratio of `0%` represented as `0.0`. pub fn zero() -> Self { Self(N64::from(0.0)) } /// A ratio of `100%` represented as `1.0`. pub fn one() -> Self { Self(N64::from(1.0)) } /// Create a new relative value. pub fn new(ratio: f64) -> Self { Self(N64::from(ratio)) } /// Get the underlying ratio. pub fn get(self) -> f64 { self.0.into() } /// Resolve this relative to the given `length`. pub fn resolve(self, length: Length) -> Length { // We don't want NaNs. if length.is_infinite() { Length::zero() } else { self.get() * length } } /// Whether the ratio is zero. pub fn is_zero(self) -> bool { self.0 == 0.0 } /// The absolute value of the this relative. pub fn abs(self) -> Self { Self::new(self.get().abs()) } } impl Debug for Relative { fn fmt(&self, f: &mut Formatter) -> fmt::Result { Display::fmt(self, f) } } impl Display for Relative { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "{}%", 100.0 * self.get()) } } impl Neg for Relative { type Output = Self; fn neg(self) -> Self { Self(-self.0) } } impl Add for Relative { type Output = Self; fn add(self, other: Self) -> Self { Self(self.0 + other.0) } } sub_impl!(Relative - Relative -> Relative); impl Mul for Relative { type Output = Self; fn mul(self, other: f64) -> Self { Self(self.0 * other) } } impl Mul for f64 { type Output = Relative; fn mul(self, other: Relative) -> Relative { other * self } } impl Div for Relative { type Output = Self; fn div(self, other: f64) -> Self { Self(self.0 / other) } } impl Div for Relative { type Output = f64; fn div(self, other: Self) -> f64 { self.get() / other.get() } } assign_impl!(Relative += Relative); assign_impl!(Relative -= Relative); assign_impl!(Relative *= f64); assign_impl!(Relative /= f64);