use std::env; use std::ffi::OsStr; use std::fs; use std::path::Path; use std::rc::Rc; use image::{GenericImageView, Rgba}; use tiny_skia as sk; use ttf_parser::{GlyphId, OutlineBuilder}; use walkdir::WalkDir; use typst::color::Color; use typst::diag::{Error, TypResult}; use typst::eval::{eval, Value}; use typst::exec::{exec, State}; use typst::geom::{self, Length, PathElement, Point, Sides, Size}; use typst::image::ImageId; use typst::layout::{layout, Element, Frame, Geometry, LayoutTree, Paint, Text}; use typst::loading::FsLoader; use typst::parse::{parse, Scanner}; use typst::source::{SourceFile, SourceId}; use typst::syntax::Pos; use typst::Context; const TYP_DIR: &str = "./typ"; const REF_DIR: &str = "./ref"; const PNG_DIR: &str = "./png"; const PDF_DIR: &str = "./pdf"; const FONT_DIR: &str = "../fonts"; fn main() { env::set_current_dir(env::current_dir().unwrap().join("tests")).unwrap(); let args = Args::new(env::args().skip(1)); let mut filtered = Vec::new(); for entry in WalkDir::new(".").into_iter() { let entry = entry.unwrap(); if entry.depth() <= 1 { continue; } let src_path = entry.into_path(); if src_path.extension() != Some(OsStr::new("typ")) { continue; } if args.matches(&src_path.to_string_lossy()) { filtered.push(src_path); } } let len = filtered.len(); if len == 1 { println!("Running test ..."); } else if len > 1 { println!("Running {} tests", len); } // We want to have "unbounded" pages, so we allow them to be infinitely // large and fit them to match their content. let mut state = State::default(); let page = state.page_mut(); page.size = Size::new(Length::pt(120.0), Length::inf()); page.margins = Sides::splat(Some(Length::pt(10.0).into())); // Hook up an assert function into the global scope. let mut std = typst::library::new(); std.def_func("test", move |_, args| { let lhs = args.expect::("left-hand side")?; let rhs = args.expect::("right-hand side")?; if lhs != rhs { return Err(Error::boxed( args.source, args.span, format!("Assertion failed: {:?} != {:?}", lhs, rhs), )); } Ok(Value::None) }); // Create loader and context. let loader = FsLoader::new().with_path(FONT_DIR).wrap(); let mut ctx = Context::builder().std(std).state(state).build(loader); // Run all the tests. let mut ok = true; for src_path in filtered { let path = src_path.strip_prefix(TYP_DIR).unwrap(); let png_path = Path::new(PNG_DIR).join(path).with_extension("png"); let ref_path = Path::new(REF_DIR).join(path).with_extension("png"); let pdf_path = args.pdf.then(|| Path::new(PDF_DIR).join(path).with_extension("pdf")); ok &= test( &mut ctx, &src_path, &png_path, &ref_path, pdf_path.as_deref(), ); } if !ok { std::process::exit(1); } } struct Args { filter: Vec, pdf: bool, perfect: bool, } impl Args { fn new(args: impl Iterator) -> Self { let mut filter = Vec::new(); let mut perfect = false; let mut pdf = false; for arg in args { match arg.as_str() { "--nocapture" => {} "--pdf" => pdf = true, "=" => perfect = true, _ => filter.push(arg), } } Self { filter, pdf, perfect } } fn matches(&self, name: &str) -> bool { if self.perfect { self.filter.iter().any(|p| name == p) } else { self.filter.is_empty() || self.filter.iter().any(|p| name.contains(p)) } } } fn test( ctx: &mut Context, src_path: &Path, png_path: &Path, ref_path: &Path, pdf_path: Option<&Path>, ) -> bool { let name = src_path.strip_prefix(TYP_DIR).unwrap_or(src_path); println!("Testing {}", name.display()); let src = fs::read_to_string(src_path).unwrap(); let mut ok = true; let mut frames = vec![]; let mut line = 0; let mut compare_ref = true; let mut compare_ever = false; let parts: Vec<_> = src.split("\n---").collect(); for (i, &part) in parts.iter().enumerate() { let is_header = i == 0 && parts.len() > 1 && part .lines() .all(|s| s.starts_with("//") || s.chars().all(|c| c.is_whitespace())); if is_header { for line in part.lines() { if line.starts_with("// Ref: false") { compare_ref = false; } } } else { let (part_ok, compare_here, part_frames) = test_part(ctx, src_path, part.into(), i, compare_ref, line); ok &= part_ok; compare_ever |= compare_here; frames.extend(part_frames); } line += part.lines().count() + 1; } if compare_ever { if let Some(pdf_path) = pdf_path { let pdf_data = typst::export::pdf(ctx, &frames); fs::create_dir_all(&pdf_path.parent().unwrap()).unwrap(); fs::write(pdf_path, pdf_data).unwrap(); } let canvas = draw(ctx, &frames, 2.0); fs::create_dir_all(&png_path.parent().unwrap()).unwrap(); canvas.save_png(png_path).unwrap(); if let Ok(ref_pixmap) = sk::Pixmap::load_png(ref_path) { if canvas != ref_pixmap { println!(" Does not match reference image. ❌"); ok = false; } } else if !frames.is_empty() { println!(" Failed to open reference image. ❌"); ok = false; } } if ok { println!("\x1b[1ATesting {} ✔", name.display()); } ok } fn test_part( ctx: &mut Context, src_path: &Path, src: String, i: usize, compare_ref: bool, line: usize, ) -> (bool, bool, Vec>) { let id = ctx.sources.provide(src_path, src); let source = ctx.sources.get(id); let (local_compare_ref, mut ref_errors) = parse_metadata(&source); let compare_ref = local_compare_ref.unwrap_or(compare_ref); let mut ok = true; let result = typeset(ctx, id); let (frames, mut errors) = match result { #[allow(unused_variables)] Ok((tree, mut frames)) => { #[cfg(feature = "layout-cache")] (ok &= test_incremental(ctx, i, &tree, &frames)); if !compare_ref { frames.clear(); } (frames, vec![]) } Err(errors) => (vec![], *errors), }; // TODO: Also handle errors from other files. errors.retain(|error| error.source == id); for error in &mut errors { error.trace.clear(); } ref_errors.sort(); errors.sort(); if errors != ref_errors { println!(" Subtest {} does not match expected errors. ❌", i); ok = false; let source = ctx.sources.get(id); for error in errors.iter() { if error.source == id && !ref_errors.contains(error) { print!(" Not annotated | "); print_error(&source, line, error); } } for error in ref_errors.iter() { if !errors.contains(error) { print!(" Not emitted | "); print_error(&source, line, error); } } } (ok, compare_ref, frames) } fn typeset(ctx: &mut Context, id: SourceId) -> TypResult<(LayoutTree, Vec>)> { let source = ctx.sources.get(id); let ast = parse(source)?; let module = eval(ctx, id, Rc::new(ast))?; let tree = exec(ctx, &module.template); let frames = layout(ctx, &tree); Ok((tree, frames)) } #[cfg(feature = "layout-cache")] fn test_incremental( ctx: &mut Context, i: usize, tree: &LayoutTree, frames: &[Rc], ) -> bool { let mut ok = true; let reference = ctx.layouts.clone(); for level in 0 .. reference.levels() { ctx.layouts = reference.clone(); ctx.layouts.retain(|x| x == level); if ctx.layouts.is_empty() { continue; } ctx.layouts.turnaround(); let cached = layout(ctx, tree); let misses = ctx .layouts .entries() .filter(|e| e.level() == level && !e.hit() && e.age() == 2) .count(); if misses > 0 { println!( " Subtest {} relayout had {} cache misses on level {} ❌", i, misses, level ); ok = false; } if cached != frames { println!(" Subtest {} relayout differs from clean pass ❌", i); ok = false; } } ctx.layouts = reference; ctx.layouts.turnaround(); ok } fn parse_metadata(source: &SourceFile) -> (Option, Vec) { let mut compare_ref = None; let mut errors = vec![]; let lines: Vec<_> = source.src().lines().map(str::trim).collect(); for (i, line) in lines.iter().enumerate() { if line.starts_with("// Ref: false") { compare_ref = Some(false); } if line.starts_with("// Ref: true") { compare_ref = Some(true); } let rest = if let Some(rest) = line.strip_prefix("// Error: ") { rest } else { continue; }; fn num(s: &mut Scanner) -> usize { s.eat_while(|c| c.is_numeric()).parse().unwrap() } let comments = lines[i ..].iter().take_while(|line| line.starts_with("//")).count(); let pos = |s: &mut Scanner| -> Pos { let first = num(s) - 1; let (delta, column) = if s.eat_if(':') { (first, num(s) - 1) } else { (0, first) }; let line = (i + comments) + delta; source.line_column_to_pos(line, column).unwrap() }; let mut s = Scanner::new(rest); let start = pos(&mut s); let end = if s.eat_if('-') { pos(&mut s) } else { start }; errors.push(Error::new(source.id(), start .. end, s.rest().trim())); } (compare_ref, errors) } fn print_error(source: &SourceFile, line: usize, error: &Error) { let start_line = 1 + line + source.pos_to_line(error.span.start).unwrap(); let start_col = 1 + source.pos_to_column(error.span.start).unwrap(); let end_line = 1 + line + source.pos_to_line(error.span.end).unwrap(); let end_col = 1 + source.pos_to_column(error.span.end).unwrap(); println!( "Error: {}:{}-{}:{}: {}", start_line, start_col, end_line, end_col, error.message ); } fn draw(ctx: &Context, frames: &[Rc], dpi: f32) -> sk::Pixmap { let pad = Length::pt(5.0); let height = pad + frames.iter().map(|l| l.size.height + pad).sum::(); let width = 2.0 * pad + frames.iter().map(|l| l.size.width).max().unwrap_or_default(); let pixel_width = (dpi * width.to_pt() as f32) as u32; let pixel_height = (dpi * height.to_pt() as f32) as u32; if pixel_width > 4000 || pixel_height > 4000 { panic!( "overlarge image: {} by {} ({} x {})", pixel_width, pixel_height, width, height, ); } let mut canvas = sk::Pixmap::new(pixel_width, pixel_height).unwrap(); let ts = sk::Transform::from_scale(dpi, dpi); canvas.fill(sk::Color::BLACK); let mut origin = Point::splat(pad); for frame in frames { let mut paint = sk::Paint::default(); paint.set_color(sk::Color::WHITE); canvas.fill_rect( sk::Rect::from_xywh( origin.x.to_pt() as f32, origin.y.to_pt() as f32, frame.size.width.to_pt() as f32, frame.size.height.to_pt() as f32, ) .unwrap(), &paint, ts, None, ); for (pos, element) in frame.elements() { let global = origin + pos; let x = global.x.to_pt() as f32; let y = global.y.to_pt() as f32; let ts = ts.pre_translate(x, y); match *element { Element::Text(ref text) => { draw_text(&mut canvas, ts, ctx, text); } Element::Geometry(ref geometry, paint) => { draw_geometry(&mut canvas, ts, geometry, paint); } Element::Image(id, size) => { draw_image(&mut canvas, ts, ctx, id, size); } } } origin.y += frame.size.height + pad; } canvas } fn draw_text(canvas: &mut sk::Pixmap, ts: sk::Transform, ctx: &Context, text: &Text) { let ttf = ctx.fonts.get(text.face_id).ttf(); let mut x = 0.0; for glyph in &text.glyphs { let units_per_em = ttf.units_per_em(); let s = text.size.to_pt() as f32 / units_per_em as f32; let dx = glyph.x_offset.to_pt() as f32; let ts = ts.pre_translate(x + dx, 0.0); // Try drawing SVG if present. if let Some(tree) = ttf .glyph_svg_image(GlyphId(glyph.id)) .and_then(|data| std::str::from_utf8(data).ok()) .map(|svg| { let viewbox = format!("viewBox=\"0 0 {0} {0}\" xmlns", units_per_em); svg.replace("xmlns", &viewbox) }) .and_then(|s| usvg::Tree::from_str(&s, &usvg::Options::default()).ok()) { for child in tree.root().children() { if let usvg::NodeKind::Path(node) = &*child.borrow() { let path = convert_usvg_path(&node.data); let ts = convert_usvg_transform(node.transform) .post_scale(s, s) .post_concat(ts); if let Some(fill) = &node.fill { let (paint, fill_rule) = convert_usvg_fill(fill); canvas.fill_path(&path, &paint, fill_rule, ts, None); } } } } else { // Otherwise, draw normal outline. let mut builder = WrappedPathBuilder(sk::PathBuilder::new()); if ttf.outline_glyph(GlyphId(glyph.id), &mut builder).is_some() { let path = builder.0.finish().unwrap(); let ts = ts.pre_scale(s, -s); let mut paint = convert_typst_paint(text.fill); paint.anti_alias = true; canvas.fill_path(&path, &paint, sk::FillRule::default(), ts, None); } } x += glyph.x_advance.to_pt() as f32; } } fn draw_geometry( canvas: &mut sk::Pixmap, ts: sk::Transform, geometry: &Geometry, paint: Paint, ) { let paint = convert_typst_paint(paint); let rule = sk::FillRule::default(); match *geometry { Geometry::Rect(Size { width, height }) => { let w = width.to_pt() as f32; let h = height.to_pt() as f32; let rect = sk::Rect::from_xywh(0.0, 0.0, w, h).unwrap(); canvas.fill_rect(rect, &paint, ts, None); } Geometry::Ellipse(size) => { let path = convert_typst_path(&geom::Path::ellipse(size)); canvas.fill_path(&path, &paint, rule, ts, None); } Geometry::Line(target, thickness) => { let path = { let mut builder = sk::PathBuilder::new(); builder.line_to(target.x.to_pt() as f32, target.y.to_pt() as f32); builder.finish().unwrap() }; let mut stroke = sk::Stroke::default(); stroke.width = thickness.to_pt() as f32; canvas.stroke_path(&path, &paint, &stroke, ts, None); } Geometry::Path(ref path) => { let path = convert_typst_path(path); canvas.fill_path(&path, &paint, rule, ts, None); } }; } fn draw_image( canvas: &mut sk::Pixmap, ts: sk::Transform, ctx: &Context, id: ImageId, size: Size, ) { let img = ctx.images.get(id); let mut pixmap = sk::Pixmap::new(img.buf.width(), img.buf.height()).unwrap(); for ((_, _, src), dest) in img.buf.pixels().zip(pixmap.pixels_mut()) { let Rgba([r, g, b, a]) = src; *dest = sk::ColorU8::from_rgba(r, g, b, a).premultiply(); } let view_width = size.width.to_pt() as f32; let view_height = size.height.to_pt() as f32; let scale_x = view_width as f32 / pixmap.width() as f32; let scale_y = view_height as f32 / pixmap.height() as f32; let mut paint = sk::Paint::default(); paint.shader = sk::Pattern::new( pixmap.as_ref(), sk::SpreadMode::Pad, sk::FilterQuality::Bilinear, 1.0, sk::Transform::from_row(scale_x, 0.0, 0.0, scale_y, 0.0, 0.0), ); let rect = sk::Rect::from_xywh(0.0, 0.0, view_width, view_height).unwrap(); canvas.fill_rect(rect, &paint, ts, None); } fn convert_typst_paint(paint: Paint) -> sk::Paint<'static> { let Paint::Color(Color::Rgba(c)) = paint; let mut paint = sk::Paint::default(); paint.set_color_rgba8(c.r, c.g, c.b, c.a); paint } fn convert_typst_path(path: &geom::Path) -> sk::Path { let mut builder = sk::PathBuilder::new(); let f = |v: Length| v.to_pt() as f32; for elem in &path.0 { match elem { PathElement::MoveTo(p) => { builder.move_to(f(p.x), f(p.y)); } PathElement::LineTo(p) => { builder.line_to(f(p.x), f(p.y)); } PathElement::CubicTo(p1, p2, p3) => { builder.cubic_to(f(p1.x), f(p1.y), f(p2.x), f(p2.y), f(p3.x), f(p3.y)); } PathElement::ClosePath => { builder.close(); } }; } builder.finish().unwrap() } fn convert_usvg_transform(transform: usvg::Transform) -> sk::Transform { let g = |v: f64| v as f32; let usvg::Transform { a, b, c, d, e, f } = transform; sk::Transform::from_row(g(a), g(b), g(c), g(d), g(e), g(f)) } fn convert_usvg_fill(fill: &usvg::Fill) -> (sk::Paint<'static>, sk::FillRule) { let mut paint = sk::Paint::default(); paint.anti_alias = true; match fill.paint { usvg::Paint::Color(usvg::Color { red, green, blue }) => { paint.set_color_rgba8(red, green, blue, fill.opacity.to_u8()) } usvg::Paint::Link(_) => {} } let rule = match fill.rule { usvg::FillRule::NonZero => sk::FillRule::Winding, usvg::FillRule::EvenOdd => sk::FillRule::EvenOdd, }; (paint, rule) } fn convert_usvg_path(path: &usvg::PathData) -> sk::Path { let mut builder = sk::PathBuilder::new(); let f = |v: f64| v as f32; for seg in path.iter() { match *seg { usvg::PathSegment::MoveTo { x, y } => { builder.move_to(f(x), f(y)); } usvg::PathSegment::LineTo { x, y } => { builder.line_to(f(x), f(y)); } usvg::PathSegment::CurveTo { x1, y1, x2, y2, x, y } => { builder.cubic_to(f(x1), f(y1), f(x2), f(y2), f(x), f(y)); } usvg::PathSegment::ClosePath => { builder.close(); } } } builder.finish().unwrap() } struct WrappedPathBuilder(sk::PathBuilder); impl OutlineBuilder for WrappedPathBuilder { fn move_to(&mut self, x: f32, y: f32) { self.0.move_to(x, y); } fn line_to(&mut self, x: f32, y: f32) { self.0.line_to(x, y); } fn quad_to(&mut self, x1: f32, y1: f32, x: f32, y: f32) { self.0.quad_to(x1, y1, x, y); } fn curve_to(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x: f32, y: f32) { self.0.cubic_to(x1, y1, x2, y2, x, y); } fn close(&mut self) { self.0.close(); } }