use std::fmt::{self, Debug, Formatter}; use std::ops::{Add, Div, Mul, Neg}; use ecow::EcoString; use typst_utils::{Numeric, Scalar}; use crate::foundations::{repr, ty, Repr}; /// A ratio of a whole. /// /// Written as a number, followed by a percent sign. A common use case is /// setting the width or height of a container (e.g., [block], [rect], etc.), /// as it can be used as part of a [relative length]($relative) to represent /// a certain percentage of the size of the surrounding container or of the /// current page. For example: /// /// ```example /// #block(width: 240pt, { /// rect(width: 25%, inset: 0pt, layout(size => size.width)) /// }) /// ``` /// /// Here the block width is set to `{240pt}` (just to demonstrate the use of /// ratio with containers), and inside of it the rectangle width is set to /// `{25%}`, which means "get 25% of the width of the innermost container" (240 /// ⋅ 0.25 = 60). Notice that the inset is equal to `{0pt}`, if it's not set /// then it will show `{50pt}` instead of `{60pt}`, which is also why the number /// looks cramped. /// /// See [relative length]($relative) for more details. /// /// However, within your own code, you can use ratios as you'd like. You can /// multiply ratio by ratio, [length], [relative length](relative), [angle], /// [int], [float], and [fraction]. /// /// # Example /// ```example /// #set align(center) /// #scale(x: 150%)[ /// Scaled apart. /// ] /// ``` #[ty(cast)] #[derive(Default, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)] pub struct Ratio(Scalar); impl Ratio { /// A ratio of `0%` represented as `0.0`. pub const fn zero() -> Self { Self(Scalar::ZERO) } /// A ratio of `100%` represented as `1.0`. pub const fn one() -> Self { Self(Scalar::ONE) } /// Create a new ratio from a value, where `1.0` means `100%`. pub const fn new(ratio: f64) -> Self { Self(Scalar::new(ratio)) } /// Get the underlying ratio. pub const fn get(self) -> f64 { (self.0).get() } /// Whether the ratio is zero. pub fn is_zero(self) -> bool { self.0 == 0.0 } /// Whether the ratio is one. pub fn is_one(self) -> bool { self.0 == 1.0 } /// The absolute value of this ratio. pub fn abs(self) -> Self { Self::new(self.get().abs()) } /// Return the ratio of the given `whole`. pub fn of(self, whole: T) -> T { let resolved = whole * self.get(); if resolved.is_finite() { resolved } else { T::zero() } } } impl Debug for Ratio { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "{:?}%", self.get() * 100.0) } } impl Repr for Ratio { fn repr(&self) -> EcoString { repr::format_float_with_unit(self.get() * 100.0, "%") } } impl Neg for Ratio { type Output = Self; fn neg(self) -> Self { Self(-self.0) } } impl Add for Ratio { type Output = Self; fn add(self, other: Self) -> Self { Self(self.0 + other.0) } } typst_utils::sub_impl!(Ratio - Ratio -> Ratio); impl Mul for Ratio { type Output = Self; fn mul(self, other: Self) -> Self { Self(self.0 * other.0) } } impl Mul for Ratio { type Output = Self; fn mul(self, other: f64) -> Self { Self(self.0 * other) } } impl Mul for f64 { type Output = Ratio; fn mul(self, other: Ratio) -> Ratio { other * self } } impl Div for Ratio { type Output = f64; fn div(self, other: Self) -> f64 { self.get() / other.get() } } impl Div for Ratio { type Output = Self; fn div(self, other: f64) -> Self { Self(self.0 / other) } } impl Div for f64 { type Output = Self; fn div(self, other: Ratio) -> Self { self / other.get() } } typst_utils::assign_impl!(Ratio += Ratio); typst_utils::assign_impl!(Ratio -= Ratio); typst_utils::assign_impl!(Ratio *= Ratio); typst_utils::assign_impl!(Ratio *= f64); typst_utils::assign_impl!(Ratio /= f64);