use std::ops::Range; use std::rc::Rc; use crate::syntax::{Green, GreenNode, NodeKind}; use super::{ parse_atomic, parse_atomic_markup, parse_block, parse_comment, parse_markup, parse_markup_elements, parse_template, TokenMode, }; /// The conditions that a node has to fulfill in order to be replaced. /// /// This can dictate if a node can be replaced at all and if yes, what can take /// its place. #[derive(Debug, Copy, Clone, Eq, PartialEq)] pub enum Postcondition { /// Changing this node can never have an influence on the other nodes. Safe, /// This node has to be replaced with a single token of the same kind. SameKind(Option), /// Changing this node into a single atomic expression is allowed if it /// appears in code mode, otherwise it is safe. AtomicPrimary, /// Changing an unsafe layer node changes what the parents or the /// surrounding nodes would be and is therefore disallowed. Change the /// parents or children instead. If it appears in Markup, however, it is /// safe to change. UnsafeLayer, /// Changing an unsafe node or any of its children will trigger undefined /// behavior. Change the parents instead. Unsafe, } /// The conditions under which a node can be inserted or remain in a tree. /// /// These conditions all search the neighbors of the node and see if its /// existence is plausible with them present. This can be used to encode some /// context-free language components for incremental parsing. #[derive(Debug, Copy, Clone, Eq, PartialEq)] pub enum Precondition { /// These nodes depend on being at the start of a line. Reparsing of safe /// left neighbors has to check this invariant. Otherwise, this node is /// safe. AtStart, /// These nodes depend on not being at the start of a line. Reparsing of /// safe left neighbors has to check this invariant. Otherwise, this node is /// safe. NotAtStart, /// These nodes must be followed by whitespace. RightWhitespace, /// No additional requirements. None, } /// Allows partial refreshs of the [`Green`] node tree. /// /// This struct holds a description of a change. Its methods can be used to try /// and apply the change to a green tree. pub struct Reparser<'a> { /// The new source code, with the change applied. src: &'a str, /// Which range in the old source file was changed. replace_range: Range, /// How many characters replaced the text in `replace_range`. replace_len: usize, } impl<'a> Reparser<'a> { /// Create a new reparser. pub fn new(src: &'a str, replace_range: Range, replace_len: usize) -> Self { Self { src, replace_range, replace_len } } } impl Reparser<'_> { /// Find the innermost child that is incremental safe. pub fn reparse(&self, green: &mut GreenNode) -> Option> { self.reparse_step(green, 0, TokenMode::Markup, true) } fn reparse_step( &self, green: &mut GreenNode, mut offset: usize, parent_mode: TokenMode, mut outermost: bool, ) -> Option> { let kind = green.kind().clone(); let mode = kind.mode().unwrap_or(parent_mode); let mut child_at_start = true; let last = green.children().len().saturating_sub(1); let mut start = None; for (i, child) in green.children_mut().iter_mut().enumerate() { let child_span = offset .. offset + child.len(); // We look for the start in the element but we only take a position // at the right border if this is markup or the last element. // // This is because in Markup mode, we want to examine all nodes // touching a replacement but in code we want to atomically replace. if child_span.contains(&self.replace_range.start) || (mode == TokenMode::Markup && self.replace_range.start == child_span.end) { start = Some((i, offset)); break; } offset += child.len(); child_at_start = child.kind().is_at_start(child_at_start); } let (start_idx, start_offset) = start?; let mut end = None; for (i, child) in green.children_mut().iter_mut().enumerate().skip(start_idx) { let child_span = offset .. offset + child.len(); // Similarly to above, the end of the edit must be in the node but // if it is at the edge and we are in markup node, we also want its // neighbor! if child_span.contains(&self.replace_range.end) || self.replace_range.end == child_span.end && (mode != TokenMode::Markup || i == last) { outermost &= i == last; end = Some(i); break; } else if mode != TokenMode::Markup || !child.kind().post().markup_safe() { break; } offset += child.len(); } let end = end?; let child_idx_range = start_idx .. end + 1; let child_span = start_offset .. offset + green.children()[end].len(); let child_kind = green.children()[end].kind().clone(); if child_idx_range.len() == 1 { let idx = child_idx_range.start; let child = &mut green.children_mut()[idx]; let prev_len = child.len(); // First, we try if the child has another, more specific applicable child. if !child_kind.post().unsafe_interior() { if let Some(range) = match child { Green::Node(n) => self.reparse_step( Rc::make_mut(n), start_offset, kind.mode().unwrap_or(TokenMode::Code), outermost, ), Green::Token(_) => None, } { let new_len = child.len(); green.update_child_len(new_len, prev_len); return Some(range); } } } debug_assert_ne!(child_idx_range.len(), 0); if mode == TokenMode::Code && child_idx_range.len() > 1 { return None; } // We now have a child that we can replace and a function to do so. let func = child_kind.reparsing_function(kind.mode().unwrap_or(TokenMode::Code))?; let policy = child_kind.post(); let len_change = self.replace_len as isize - self.replace_range.len() as isize; let mut src_span = child_span; src_span.end = (src_span.end as isize + len_change) as usize; let recompile_range = if policy == Postcondition::AtomicPrimary { src_span.start .. self.src.len() } else { src_span.clone() }; let (mut new_children, terminated) = func(&self.src[recompile_range], child_at_start)?; // Do not accept unclosed nodes if the old node did not use to be at the // right edge of the tree. if !outermost && !terminated { return None; } let insertion = match check_invariants( &new_children, green.children(), child_idx_range.clone(), child_at_start, mode, src_span.clone(), policy, ) { InvariantResult::Ok => Some(new_children), InvariantResult::UseFirst => Some(vec![std::mem::take(&mut new_children[0])]), InvariantResult::Error => None, }?; green.replace_child_range(child_idx_range, insertion); Some(src_span) } } #[derive(Debug, Copy, Clone, PartialEq, Eq)] enum InvariantResult { Ok, UseFirst, Error, } fn check_invariants( use_children: &[Green], old_children: &[Green], child_idx_range: Range, child_at_start: bool, mode: TokenMode, src_span: Range, policy: Postcondition, ) -> InvariantResult { let (new_children, ok) = if policy == Postcondition::AtomicPrimary { if use_children.iter().map(Green::len).sum::() == src_span.len() { (use_children, InvariantResult::Ok) } else if use_children.len() == 1 && use_children[0].len() == src_span.len() { (&use_children[0 .. 1], InvariantResult::UseFirst) } else { return InvariantResult::Error; } } else { (use_children, InvariantResult::Ok) }; let child_mode = old_children[child_idx_range.start].kind().mode().unwrap_or(mode); // Check if the children / child has the right type. let same_kind = match policy { Postcondition::SameKind(x) => x.map_or(true, |x| x == child_mode), _ => false, }; if same_kind || policy == Postcondition::AtomicPrimary { if new_children.len() != 1 { return InvariantResult::Error; } if same_kind { if old_children[child_idx_range.start].kind() != new_children[0].kind() { return InvariantResult::Error; } } } // Check if the neighbor invariants are still true. if mode == TokenMode::Markup { if child_idx_range.start > 0 { if old_children[child_idx_range.start - 1].kind().pre() == Precondition::RightWhitespace && !new_children[0].kind().is_whitespace() { return InvariantResult::Error; } } if new_children.last().map(|x| x.kind().pre()) == Some(Precondition::RightWhitespace) && old_children.len() > child_idx_range.end { if !old_children[child_idx_range.end].kind().is_whitespace() { return InvariantResult::Error; } } let mut post_at_start = child_at_start; for child in new_children { post_at_start = child.kind().is_at_start(post_at_start); } for child in &old_children[child_idx_range.end ..] { if child.kind().is_trivia() { post_at_start = child.kind().is_at_start(post_at_start); continue; } let pre = child.kind().pre(); if pre == Precondition::AtStart && !post_at_start || pre == Precondition::NotAtStart && post_at_start { return InvariantResult::Error; } break; } } ok } impl NodeKind { /// Return the correct reparsing function given the postconditions for the /// type. fn reparsing_function( &self, parent_mode: TokenMode, ) -> Option Option<(Vec, bool)>> { let policy = self.post(); let mode = self.mode().unwrap_or(parent_mode); match policy { Postcondition::Unsafe | Postcondition::UnsafeLayer => None, Postcondition::AtomicPrimary if mode == TokenMode::Code => Some(parse_atomic), Postcondition::AtomicPrimary => Some(parse_atomic_markup), Postcondition::SameKind(x) if x == None || x == Some(mode) => match self { NodeKind::Template => Some(parse_template), NodeKind::Block => Some(parse_block), NodeKind::LineComment | NodeKind::BlockComment => Some(parse_comment), _ => None, }, _ => match mode { TokenMode::Markup if self == &Self::Markup => Some(parse_markup), TokenMode::Markup => Some(parse_markup_elements), _ => return None, }, } } /// Whether it is safe to do incremental parsing on this node. Never allow /// non-termination errors if this is not already the last leaf node. pub fn post(&self) -> Postcondition { match self { // Replacing parenthesis changes if the expression is balanced and // is therefore not safe. Self::LeftBracket | Self::RightBracket | Self::LeftBrace | Self::RightBrace | Self::LeftParen | Self::RightParen => Postcondition::Unsafe, // Replacing an operator can change whether the parent is an // operation which makes it unsafe. The star can appear in markup. Self::Star | Self::Comma | Self::Semicolon | Self::Colon | Self::Plus | Self::Minus | Self::Slash | Self::Eq | Self::EqEq | Self::ExclEq | Self::Lt | Self::LtEq | Self::Gt | Self::GtEq | Self::PlusEq | Self::HyphEq | Self::StarEq | Self::SlashEq | Self::Not | Self::And | Self::Or | Self::With | Self::Dots | Self::Arrow => Postcondition::Unsafe, // These keywords change what kind of expression the parent is and // how far the expression would go. Self::Let | Self::Set | Self::If | Self::Else | Self::For | Self::In | Self::While | Self::Break | Self::Continue | Self::Return | Self::Import | Self::Include | Self::From => Postcondition::Unsafe, // Changing the heading level, enum numbering, or list bullet // changes the next layer. Self::EnumNumbering(_) => Postcondition::Unsafe, Self::Error(_, _) | Self::Unknown(_) => Postcondition::Unsafe, // These are complex expressions which may screw with their // environments. Self::Call | Self::Unary | Self::Binary | Self::CallArgs | Self::Named | Self::Spread => Postcondition::UnsafeLayer, // The closure is a bit magic with the let expression, and also it // is not atomic. Self::Closure | Self::ClosureParams => Postcondition::UnsafeLayer, // Missing these creates errors for the parents. Self::WithExpr | Self::ForPattern | Self::ImportItems => { Postcondition::UnsafeLayer } // Only markup is expected at the points where it does occur. Self::Markup => Postcondition::SameKind(None), // These can appear everywhere and must not change to other stuff // because that could change the outer expression. Self::LineComment | Self::BlockComment => Postcondition::SameKind(None), // These can appear as bodies and would trigger an error if they // became something else. Self::Template => Postcondition::SameKind(None), Self::Block => Postcondition::SameKind(Some(TokenMode::Code)), // Whitespace in code mode has to remain whitespace or else the type // of things would change. Self::Space(_) => Postcondition::SameKind(Some(TokenMode::Code)), // These are expressions that can be replaced by other expressions. Self::Ident(_) | Self::Bool(_) | Self::Int(_) | Self::Float(_) | Self::Length(_, _) | Self::Angle(_, _) | Self::Percentage(_) | Self::Str(_) | Self::Fraction(_) | Self::Array | Self::Dict | Self::Group | Self::None | Self::Auto => Postcondition::AtomicPrimary, // More complex, but still an expression. Self::ForExpr | Self::WhileExpr | Self::IfExpr | Self::LetExpr | Self::SetExpr | Self::ImportExpr | Self::IncludeExpr => Postcondition::AtomicPrimary, // These are all replaceable by other tokens. Self::Parbreak | Self::Linebreak | Self::Text(_) | Self::TextInLine(_) | Self::NonBreakingSpace | Self::EnDash | Self::EmDash | Self::Escape(_) | Self::Strong | Self::Emph | Self::Heading | Self::Enum | Self::List | Self::Raw(_) | Self::Math(_) => Postcondition::Safe, } } /// The appropriate precondition for the type. pub fn pre(&self) -> Precondition { match self { Self::Heading | Self::Enum | Self::List => Precondition::AtStart, Self::TextInLine(_) => Precondition::NotAtStart, Self::Linebreak => Precondition::RightWhitespace, _ => Precondition::None, } } } impl Postcondition { pub fn unsafe_interior(&self) -> bool { match self { Self::Unsafe => true, _ => false, } } pub fn markup_safe(&self) -> bool { match self { Self::Safe | Self::UnsafeLayer => true, Self::SameKind(tm) => tm.map_or(false, |tm| tm != TokenMode::Markup), _ => false, } } } #[cfg(test)] mod tests { use crate::parse::parse; use crate::source::SourceFile; use super::*; #[test] #[rustfmt::skip] fn test_incremental_parse() { #[track_caller] fn test(prev: &str, range: Range, with: &str, incr: Range) { let mut source = SourceFile::detached(prev); let range = source.edit(range, with); assert_eq!(range, incr); let incr_tree = source.root().clone(); assert_eq!(parse(source.src()), incr_tree); } // Test simple replacements. test("hello world", 6 .. 11, "walkers", 5 .. 13); test("some content", 0..12, "", 0..0); test("", 0..0, "do it", 0..5); test("a d e", 1 .. 3, " b c d", 0 .. 8); test("a #f() e", 1 .. 6, " b c d", 0 .. 8); test("{(0, 1, 2)}", 5 .. 6, "11pt", 5 .. 9); test("= A heading", 3 .. 3, "n evocative", 2 .. 15); test("your thing", 5 .. 5, "a", 4 .. 11); test("a your thing a", 6 .. 7, "a", 2 .. 12); test("{call(); abc}", 7 .. 7, "[]", 0 .. 15); test("#call() abc", 7 .. 7, "[]", 0 .. 10); // test("hi\n- item\n- item 2\n - item 3", 10 .. 10, " ", 9 .. 33); test("#grid(columns: (auto, 1fr, 40%), [*plonk*], rect(width: 100%, height: 1pt, fill: conifer), [thing])", 16 .. 20, "none", 16 .. 20); test("#grid(columns: (auto, 1fr, 40%), [*plonk*], rect(width: 100%, height: 1pt, fill: conifer), [thing])", 33 .. 42, "[_gronk_]", 33 .. 42); test("#grid(columns: (auto, 1fr, 40%), [*plonk*], rect(width: 100%, height: 1pt, fill: conifer), [thing])", 34 .. 41, "_bar_", 34 .. 39); test("{let i=1; for x in range(5) {i}}", 6 .. 6, " ", 1 .. 9); test("{let i=1; for x in range(5) {i}}", 13 .. 14, " ", 10 .. 32); test("hello {x}", 6 .. 9, "#f()", 5 .. 10); test("this is -- in my opinion -- spectacular", 8 .. 10, "---", 7 .. 12); test("understanding `code` is complicated", 15 .. 15, "C ", 14 .. 22); test("{ let x = g() }", 10 .. 12, "f(54", 0 .. 17); test("a #let rect with (fill: eastern)\nb", 16 .. 31, " (stroke: conifer", 2 .. 34); // Test the whitespace invariants. test("hello \\ world", 7 .. 8, "a ", 6 .. 14); test("hello \\ world", 7 .. 8, " a", 6 .. 14); test("x = y", 1 .. 1, " + y", 0 .. 6); test("x = y", 1 .. 1, " + y\n", 0 .. 10); test("abc\n= a heading\njoke", 3 .. 4, "\nmore\n\n", 0 .. 21); test("abc\n= a heading\njoke", 3 .. 4, "\nnot ", 0 .. 19); test("hey #myfriend", 4 .. 4, "\\", 0 .. 14); test("hey #myfriend", 4 .. 4, "\\", 3 .. 6); // Test type invariants. test("a #for x in array {x}", 18 .. 21, "[#x]", 2 .. 22); test("a #let x = 1 {5}", 3 .. 6, "if", 0 .. 15); test("a {let x = 1 {5}} b", 3 .. 6, "if", 2 .. 16); test("#let x = 1 {5}", 4 .. 4, " if", 0 .. 17); test("{let x = 1 {5}}", 4 .. 4, " if", 0 .. 18); test("a // b c #f()", 3 .. 4, "", 0 .. 12); test("{\nf()\n//g(a)\n}", 6 .. 8, "", 0 .. 12); test("a{\nf()\n//g(a)\n}b", 7 .. 9, "", 1 .. 13); test("a #while x {\n g(x) \n} b", 11 .. 11, "//", 0 .. 26); test("{(1, 2)}", 1 .. 1, "while ", 0 .. 14); test("a b c", 1 .. 1, "{[}", 0 .. 5); // Test unclosed things. test(r#"{"hi"}"#, 4 .. 5, "c", 0 .. 6); test(r"this \u{abcd}", 8 .. 9, "", 5 .. 12); test(r"this \u{abcd} that", 12 .. 13, "", 0 .. 17); test(r"{{let x = z}; a = 1} b", 6 .. 6, "//", 0 .. 24); test("a b c", 1 .. 1, " /* letters */", 0 .. 16); test("a b c", 1 .. 1, " /* letters", 0 .. 16); test("{if i==1 {a} else [b]; b()}", 12 .. 12, " /* letters */", 1 .. 35); test("{if i==1 {a} else [b]; b()}", 12 .. 12, " /* letters", 0 .. 38); test(r#"a ```typst hello``` b"#, 16 .. 17, "", 0 .. 20); test(r#"a ```typst hello```"#, 16 .. 17, "", 2 .. 18); } }