// Test that gradients are applied correctly on equations. --- // Test on cancel #show math.equation: set text(fill: gradient.linear(..color.map.rainbow)) #show math.equation: box $ a dot cancel(5) = cancel(25) 5 x + cancel(5) 1 $ --- // Test on frac #show math.equation: set text(fill: gradient.linear(..color.map.rainbow)) #show math.equation: box $ nabla dot bold(E) = frac(rho, epsilon_0) $ --- // Test on root #show math.equation: set text(fill: gradient.linear(..color.map.rainbow)) #show math.equation: box $ x_"1,2" = frac(-b +- sqrt(b^2 - 4 a c), 2 a) $ --- // Test on matrix #show math.equation: set text(fill: gradient.linear(..color.map.rainbow)) #show math.equation: box $ A = mat( 1, 2, 3; 4, 5, 6; 7, 8, 9 ) $ --- // Test on underover #show math.equation: set text(fill: gradient.linear(..color.map.rainbow)) #show math.equation: box $ underline(X^2) $ $ overline("hello, world!") $ --- // Test a different direction #show math.equation: set text(fill: gradient.linear(..color.map.rainbow, dir: ttb)) #show math.equation: box $ A = mat( 1, 2, 3; 4, 5, 6; 7, 8, 9 ) $ $ x_"1,2" = frac(-b +- sqrt(b^2 - 4 a c), 2 a) $ --- // Test miscelaneous #show math.equation: set text(fill: gradient.linear(..color.map.rainbow)) #show math.equation: box $ hat(x) = bar x bar = vec(x, y, z) = tilde(x) = dot(x) $ $ x prime = vec(1, 2, delim: "[") $ $ sum_(i in NN) 1 + i $ $ attach( Pi, t: alpha, b: beta, tl: 1, tr: 2+3, bl: 4+5, br: 6, ) $ --- // Test radial gradient #show math.equation: set text(fill: gradient.radial(..color.map.rainbow, center: (30%, 30%))) #show math.equation: box $ A = mat( 1, 2, 3; 4, 5, 6; 7, 8, 9 ) $ --- // Test conic gradient #show math.equation: set text(fill: gradient.conic(red, blue, angle: 45deg)) #show math.equation: box $ A = mat( 1, 2, 3; 4, 5, 6; 7, 8, 9 ) $