use std::any::Any; use std::collections::BTreeMap; use std::fmt::{self, Debug, Display, Formatter}; use std::ops::Deref; use std::rc::Rc; use super::{Args, Eval, EvalContext}; use crate::color::Color; use crate::geom::{Angle, Length, Linear, Relative}; use crate::pretty::{pretty, Pretty, Printer}; use crate::syntax::{Spanned, Tree, WithSpan}; /// A computational value. #[derive(Debug, Clone, PartialEq)] pub enum Value { /// The value that indicates the absence of a meaningful value. None, /// A boolean: `true, false`. Bool(bool), /// An integer: `120`. Int(i64), /// A floating-point number: `1.2`, `10e-4`. Float(f64), /// A length: `12pt`, `3cm`. Length(Length), /// An angle: `1.5rad`, `90deg`. Angle(Angle), /// A relative value: `50%`. Relative(Relative), /// A combination of an absolute length and a relative value: `20% + 5cm`. Linear(Linear), /// A color value: `#f79143ff`. Color(Color), /// A string: `"string"`. Str(String), /// An array value: `(1, "hi", 12cm)`. Array(ValueArray), /// A dictionary value: `(color: #f79143, pattern: dashed)`. Dict(ValueDict), /// A template value: `[*Hi* there]`. Template(ValueTemplate), /// An executable function. Func(ValueFunc), /// Any object. Any(ValueAny), /// The result of invalid operations. Error, } impl Value { /// Try to cast the value into a specific type. pub fn cast(self) -> CastResult where T: Cast, { T::cast(self) } /// The name of the stored value's type. pub fn type_name(&self) -> &'static str { match self { Self::None => "none", Self::Bool(_) => bool::TYPE_NAME, Self::Int(_) => i64::TYPE_NAME, Self::Float(_) => f64::TYPE_NAME, Self::Length(_) => Length::TYPE_NAME, Self::Angle(_) => Angle::TYPE_NAME, Self::Relative(_) => Relative::TYPE_NAME, Self::Linear(_) => Linear::TYPE_NAME, Self::Color(_) => Color::TYPE_NAME, Self::Str(_) => String::TYPE_NAME, Self::Array(_) => ValueArray::TYPE_NAME, Self::Dict(_) => ValueDict::TYPE_NAME, Self::Template(_) => ValueTemplate::TYPE_NAME, Self::Func(_) => ValueFunc::TYPE_NAME, Self::Any(v) => v.type_name(), Self::Error => "error", } } /// Whether the value is numeric. pub fn is_numeric(&self) -> bool { matches!(self, Value::Int(_) | Value::Float(_) | Value::Length(_) | Value::Angle(_) | Value::Relative(_) | Value::Linear(_) ) } } impl Eval for &Value { type Output = (); /// Evaluate everything contained in this value. fn eval(self, ctx: &mut EvalContext) -> Self::Output { ctx.push(ctx.make_text_node(match self { Value::None => return, Value::Str(s) => s.clone(), Value::Template(tree) => return tree.eval(ctx), other => pretty(other), })); } } impl Default for Value { fn default() -> Self { Value::None } } impl Pretty for Value { fn pretty(&self, p: &mut Printer) { match self { Value::None => p.push_str("none"), Value::Bool(v) => write!(p, "{}", v).unwrap(), Value::Int(v) => write!(p, "{}", v).unwrap(), Value::Float(v) => write!(p, "{}", v).unwrap(), Value::Length(v) => write!(p, "{}", v).unwrap(), Value::Angle(v) => write!(p, "{}", v).unwrap(), Value::Relative(v) => write!(p, "{}", v).unwrap(), Value::Linear(v) => write!(p, "{}", v).unwrap(), Value::Color(v) => write!(p, "{}", v).unwrap(), Value::Str(v) => write!(p, "{:?}", v).unwrap(), Value::Array(v) => v.pretty(p), Value::Dict(v) => v.pretty(p), Value::Template(v) => { p.push_str("["); v.pretty(p); p.push_str("]"); } Value::Func(v) => v.pretty(p), Value::Any(v) => v.pretty(p), Value::Error => p.push_str("(error)"), } } } /// An array value: `(1, "hi", 12cm)`. pub type ValueArray = Vec; impl Pretty for ValueArray { fn pretty(&self, p: &mut Printer) { p.push_str("("); p.join(self, ", ", |item, p| item.pretty(p)); if self.len() == 1 { p.push_str(","); } p.push_str(")"); } } /// A dictionary value: `(color: #f79143, pattern: dashed)`. pub type ValueDict = BTreeMap; impl Pretty for ValueDict { fn pretty(&self, p: &mut Printer) { p.push_str("("); if self.is_empty() { p.push_str(":"); } else { p.join(self, ", ", |(key, value), p| { p.push_str(key); p.push_str(": "); value.pretty(p); }); } p.push_str(")"); } } /// A template value: `[*Hi* there]`. pub type ValueTemplate = Tree; /// A wrapper around a reference-counted executable function. #[derive(Clone)] pub struct ValueFunc { name: String, f: Rc Value>, } impl ValueFunc { /// Create a new function value from a rust function or closure. pub fn new(name: impl Into, f: F) -> Self where F: Fn(&mut EvalContext, &mut Args) -> Value + 'static, { Self { name: name.into(), f: Rc::new(f) } } } impl PartialEq for ValueFunc { fn eq(&self, _: &Self) -> bool { false } } impl Deref for ValueFunc { type Target = dyn Fn(&mut EvalContext, &mut Args) -> Value; fn deref(&self) -> &Self::Target { self.f.as_ref() } } impl Pretty for ValueFunc { fn pretty(&self, p: &mut Printer) { write!(p, "(function {})", self.name).unwrap(); } } impl Debug for ValueFunc { fn fmt(&self, f: &mut Formatter) -> fmt::Result { f.debug_struct("ValueFunc").field("name", &self.name).finish() } } /// A wrapper around a dynamic value. pub struct ValueAny(Box); impl ValueAny { /// Create a new instance from any value that satisifies the required bounds. pub fn new(any: T) -> Self where T: Type + Debug + Display + Clone + PartialEq + 'static, { Self(Box::new(any)) } /// Whether the wrapped type is `T`. pub fn is(&self) -> bool { self.0.as_any().is::() } /// Try to downcast to a specific type. pub fn downcast(self) -> Result { if self.is::() { Ok(*self.0.into_any().downcast().unwrap()) } else { Err(self) } } /// Try to downcast to a reference to a specific type. pub fn downcast_ref(&self) -> Option<&T> { self.0.as_any().downcast_ref() } /// The name of the stored value's type. pub fn type_name(&self) -> &'static str { self.0.dyn_type_name() } } impl Clone for ValueAny { fn clone(&self) -> Self { Self(self.0.dyn_clone()) } } impl PartialEq for ValueAny { fn eq(&self, other: &Self) -> bool { self.0.dyn_eq(other) } } impl Pretty for ValueAny { fn pretty(&self, p: &mut Printer) { write!(p, "{}", self.0).unwrap(); } } impl Debug for ValueAny { fn fmt(&self, f: &mut Formatter) -> fmt::Result { f.debug_tuple("ValueAny").field(&self.0).finish() } } trait Bounds: Debug + Display + 'static { fn as_any(&self) -> &dyn Any; fn into_any(self: Box) -> Box; fn dyn_eq(&self, other: &ValueAny) -> bool; fn dyn_clone(&self) -> Box; fn dyn_type_name(&self) -> &'static str; } impl Bounds for T where T: Type + Debug + Display + Clone + PartialEq + 'static, { fn as_any(&self) -> &dyn Any { self } fn into_any(self: Box) -> Box { self } fn dyn_eq(&self, other: &ValueAny) -> bool { if let Some(other) = other.downcast_ref::() { self == other } else { false } } fn dyn_clone(&self) -> Box { Box::new(self.clone()) } fn dyn_type_name(&self) -> &'static str { T::TYPE_NAME } } /// Types that can be stored in values. pub trait Type { /// The name of the type. const TYPE_NAME: &'static str; } impl Type for Spanned where T: Type, { const TYPE_NAME: &'static str = T::TYPE_NAME; } /// Cast from a value to a specific type. pub trait Cast: Type + Sized { /// Try to cast the value into an instance of `Self`. fn cast(value: V) -> CastResult; } /// The result of casting a value to a specific type. #[derive(Debug, Clone, Eq, PartialEq)] pub enum CastResult { /// The value was cast successfully. Ok(T), /// The value was cast successfully, but with a warning message. Warn(T, String), /// The value could not be cast into the specified type. Err(V), } impl CastResult { /// Access the conversion result, discarding a possibly existing warning. pub fn ok(self) -> Option { match self { CastResult::Ok(t) | CastResult::Warn(t, _) => Some(t), CastResult::Err(_) => None, } } } impl Type for Value { const TYPE_NAME: &'static str = "value"; } impl Cast for Value { fn cast(value: Value) -> CastResult { CastResult::Ok(value) } } impl Cast> for T where T: Cast, { fn cast(value: Spanned) -> CastResult> { let span = value.span; match T::cast(value.v) { CastResult::Ok(t) => CastResult::Ok(t), CastResult::Warn(t, m) => CastResult::Warn(t, m), CastResult::Err(v) => CastResult::Err(v.with_span(span)), } } } impl Cast> for Spanned where T: Cast, { fn cast(value: Spanned) -> CastResult> { let span = value.span; match T::cast(value.v) { CastResult::Ok(t) => CastResult::Ok(t.with_span(span)), CastResult::Warn(t, m) => CastResult::Warn(t.with_span(span), m), CastResult::Err(v) => CastResult::Err(v.with_span(span)), } } } macro_rules! impl_primitive { ($type:ty: $type_name:literal, $variant:path $(, $pattern:pat => $out:expr)* $(,)? ) => { impl Type for $type { const TYPE_NAME: &'static str = $type_name; } impl From<$type> for Value { fn from(v: $type) -> Self { $variant(v) } } impl Cast for $type { fn cast(value: Value) -> CastResult { match value { $variant(v) => CastResult::Ok(v), $($pattern => CastResult::Ok($out),)* v => CastResult::Err(v), } } } }; } impl_primitive! { bool: "boolean", Value::Bool } impl_primitive! { i64: "integer", Value::Int } impl_primitive! { f64: "float", Value::Float, Value::Int(v) => v as f64, } impl_primitive! { Length: "length", Value::Length } impl_primitive! { Angle: "angle", Value::Angle } impl_primitive! { Relative: "relative", Value::Relative } impl_primitive! { Linear: "linear", Value::Linear, Value::Length(v) => v.into(), Value::Relative(v) => v.into(), } impl_primitive! { Color: "color", Value::Color } impl_primitive! { String: "string", Value::Str } impl_primitive! { ValueArray: "array", Value::Array } impl_primitive! { ValueDict: "dictionary", Value::Dict } impl_primitive! { ValueTemplate: "template", Value::Template } impl_primitive! { ValueFunc: "function", Value::Func } impl From<&str> for Value { fn from(v: &str) -> Self { Self::Str(v.to_string()) } } impl From for Value { fn from(v: ValueAny) -> Self { Self::Any(v) } } /// Make a type usable as a [`Value`]. /// /// Given a type `T`, this always implements the following traits: /// - [`Type`] for `T`, /// - [`Cast`](Cast) for `T`. #[macro_export] macro_rules! impl_type { ($type:ty: $type_name:literal $(, $pattern:pat => $out:expr)* $(, #($anyvar:ident: $anytype:ty) => $anyout:expr)* $(,)? ) => { impl $crate::eval::Type for $type { const TYPE_NAME: &'static str = $type_name; } impl $crate::eval::Cast<$crate::eval::Value> for $type { fn cast( value: $crate::eval::Value, ) -> $crate::eval::CastResult { use $crate::eval::*; #[allow(unreachable_code)] match value { $($pattern => CastResult::Ok($out),)* Value::Any(mut any) => { any = match any.downcast::() { Ok(t) => return CastResult::Ok(t), Err(any) => any, }; $(any = match any.downcast::<$anytype>() { Ok($anyvar) => return CastResult::Ok($anyout), Err(any) => any, };)* CastResult::Err(Value::Any(any)) }, v => CastResult::Err(v), } } } }; } #[cfg(test)] mod tests { use super::*; use crate::color::RgbaColor; use crate::parse::parse; use crate::pretty::pretty; use crate::syntax::Node; #[track_caller] fn test_pretty(value: impl Into, exp: &str) { assert_eq!(pretty(&value.into()), exp); } #[test] fn test_pretty_print_simple_values() { test_pretty(Value::None, "none"); test_pretty(false, "false"); test_pretty(12.4, "12.4"); test_pretty(Length::pt(5.5), "5.5pt"); test_pretty(Angle::deg(90.0), "90deg"); test_pretty(Relative::ONE / 2.0, "50%"); test_pretty(Relative::new(0.3) + Length::cm(2.0), "30% + 2cm"); test_pretty(Color::Rgba(RgbaColor::new(1, 1, 1, 0xff)), "#010101"); test_pretty("hello", r#""hello""#); test_pretty(vec![Spanned::zero(Node::Strong)], "[*]"); test_pretty(ValueFunc::new("nil", |_, _| Value::None), "(function nil)"); test_pretty(ValueAny::new(1), "1"); test_pretty(Value::Error, "(error)"); } #[test] fn test_pretty_print_collections() { // Array. test_pretty(Value::Array(vec![]), "()"); test_pretty(vec![Value::None], "(none,)"); test_pretty(vec![Value::Int(1), Value::Int(2)], "(1, 2)"); // Dictionary. let mut dict = BTreeMap::new(); dict.insert("one".into(), Value::Int(1)); dict.insert("two".into(), Value::Template(parse("[f]").output)); test_pretty(BTreeMap::new(), "(:)"); test_pretty(dict, "(one: 1, two: [[f]])"); } }