use super::{AlignNode, Spacing}; use crate::library::prelude::*; use crate::library::text::ParNode; /// Arrange nodes and spacing along an axis. #[derive(Debug, Hash)] pub struct StackNode { /// The stacking direction. pub dir: Dir, /// The spacing between non-spacing children. pub spacing: Option, /// The children to be stacked. pub children: Vec, } #[node] impl StackNode { fn construct(_: &mut Vm, args: &mut Args) -> SourceResult { Ok(Content::block(Self { dir: args.named("dir")?.unwrap_or(Dir::TTB), spacing: args.named("spacing")?, children: args.all()?, })) } } impl Layout for StackNode { fn layout( &self, world: Tracked, regions: &Regions, styles: StyleChain, ) -> SourceResult> { let mut layouter = StackLayouter::new(self.dir, regions, styles); // Spacing to insert before the next node. let mut deferred = None; for child in &self.children { match child { StackChild::Spacing(kind) => { layouter.layout_spacing(*kind); deferred = None; } StackChild::Node(node) => { if let Some(kind) = deferred { layouter.layout_spacing(kind); } layouter.layout_node(world, node, styles)?; deferred = self.spacing; } } } Ok(layouter.finish()) } } /// A child of a stack node. #[derive(Hash)] pub enum StackChild { /// Spacing between other nodes. Spacing(Spacing), /// An arbitrary node. Node(LayoutNode), } impl Debug for StackChild { fn fmt(&self, f: &mut Formatter) -> fmt::Result { match self { Self::Spacing(kind) => kind.fmt(f), Self::Node(node) => node.fmt(f), } } } castable! { StackChild, Expected: "relative length, fraction, or content", Value::Length(v) => Self::Spacing(Spacing::Relative(v.into())), Value::Ratio(v) => Self::Spacing(Spacing::Relative(v.into())), Value::Relative(v) => Self::Spacing(Spacing::Relative(v)), Value::Fraction(v) => Self::Spacing(Spacing::Fractional(v)), Value::Content(v) => Self::Node(v.pack()), } /// Performs stack layout. pub struct StackLayouter<'a> { /// The stacking direction. dir: Dir, /// The axis of the stacking direction. axis: Axis, /// The regions to layout children into. regions: Regions, /// The inherited styles. styles: StyleChain<'a>, /// Whether the stack itself should expand to fill the region. expand: Axes, /// The full size of the current region that was available at the start. full: Size, /// The generic size used by the frames for the current region. used: Gen, /// The sum of fractions in the current region. fr: Fr, /// Already layouted items whose exact positions are not yet known due to /// fractional spacing. items: Vec, /// Finished frames for previous regions. finished: Vec, } /// A prepared item in a stack layout. enum StackItem { /// Absolute spacing between other items. Absolute(Abs), /// Fractional spacing between other items. Fractional(Fr), /// A frame for a layouted child node. Frame(Frame, Align), } impl<'a> StackLayouter<'a> { /// Create a new stack layouter. pub fn new(dir: Dir, regions: &Regions, styles: StyleChain<'a>) -> Self { let axis = dir.axis(); let expand = regions.expand; let full = regions.first; // Disable expansion along the block axis for children. let mut regions = regions.clone(); regions.expand.set(axis, false); Self { dir, axis, regions, styles, expand, full, used: Gen::zero(), fr: Fr::zero(), items: vec![], finished: vec![], } } /// Add spacing along the spacing direction. pub fn layout_spacing(&mut self, spacing: Spacing) { match spacing { Spacing::Relative(v) => { // Resolve the spacing and limit it to the remaining space. let resolved = v.resolve(self.styles).relative_to(self.regions.base.get(self.axis)); let remaining = self.regions.first.get_mut(self.axis); let limited = resolved.min(*remaining); *remaining -= limited; self.used.main += limited; self.items.push(StackItem::Absolute(resolved)); } Spacing::Fractional(v) => { self.fr += v; self.items.push(StackItem::Fractional(v)); } } } /// Layout an arbitrary node. pub fn layout_node( &mut self, world: Tracked, node: &LayoutNode, styles: StyleChain, ) -> SourceResult<()> { if self.regions.is_full() { self.finish_region(); } // Block-axis alignment of the `AlignNode` is respected // by the stack node. let align = node .downcast::() .and_then(|node| node.aligns.get(self.axis)) .map(|align| align.resolve(styles)) .unwrap_or_else(|| { if let Some(Content::Styled(styled)) = node.downcast::() { let map = &styled.1; if map.contains(ParNode::ALIGN) { return StyleChain::with_root(&styled.1).get(ParNode::ALIGN); } } self.dir.start().into() }); let frames = node.layout(world, &self.regions, styles)?; let len = frames.len(); for (i, mut frame) in frames.into_iter().enumerate() { // Set the generic block role. frame.apply_role(Role::GenericBlock); // Grow our size, shrink the region and save the frame for later. let size = frame.size(); let size = match self.axis { Axis::X => Gen::new(size.y, size.x), Axis::Y => Gen::new(size.x, size.y), }; self.used.main += size.main; self.used.cross.set_max(size.cross); *self.regions.first.get_mut(self.axis) -= size.main; self.items.push(StackItem::Frame(frame, align)); if i + 1 < len { self.finish_region(); } } Ok(()) } /// Advance to the next region. pub fn finish_region(&mut self) { // Determine the size of the stack in this region dependening on whether // the region expands. let used = self.used.to_axes(self.axis); let mut size = self.expand.select(self.full, used); // Expand fully if there are fr spacings. let full = self.full.get(self.axis); let remaining = full - self.used.main; if self.fr.get() > 0.0 && full.is_finite() { self.used.main = full; size.set(self.axis, full); } let mut output = Frame::new(size); let mut cursor = Abs::zero(); let mut ruler: Align = self.dir.start().into(); // Place all frames. for item in self.items.drain(..) { match item { StackItem::Absolute(v) => cursor += v, StackItem::Fractional(v) => cursor += v.share(self.fr, remaining), StackItem::Frame(frame, align) => { if self.dir.is_positive() { ruler = ruler.max(align); } else { ruler = ruler.min(align); } // Align along the block axis. let parent = size.get(self.axis); let child = frame.size().get(self.axis); let block = ruler.position(parent - self.used.main) + if self.dir.is_positive() { cursor } else { self.used.main - child - cursor }; let pos = Gen::new(Abs::zero(), block).to_point(self.axis); cursor += child; output.push_frame(pos, frame); } } } // Advance to the next region. self.regions.next(); self.full = self.regions.first; self.used = Gen::zero(); self.fr = Fr::zero(); self.finished.push(output); } /// Finish layouting and return the resulting frames. pub fn finish(mut self) -> Vec { self.finish_region(); self.finished } } /// A container with a main and cross component. #[derive(Default, Copy, Clone, Eq, PartialEq, Hash)] pub struct Gen { /// The main component. pub cross: T, /// The cross component. pub main: T, } impl Gen { /// Create a new instance from the two components. pub const fn new(cross: T, main: T) -> Self { Self { cross, main } } /// Convert to the specific representation, given the current main axis. pub fn to_axes(self, main: Axis) -> Axes { match main { Axis::X => Axes::new(self.main, self.cross), Axis::Y => Axes::new(self.cross, self.main), } } } impl Gen { /// The zero value. pub fn zero() -> Self { Self { cross: Abs::zero(), main: Abs::zero() } } /// Convert to a point. pub fn to_point(self, main: Axis) -> Point { self.to_axes(main).to_point() } }