use std::fmt::{self, Debug, Formatter}; use std::rc::Rc; use itertools::Either; use unicode_bidi::{BidiInfo, Level}; use xi_unicode::LineBreakIterator; use super::prelude::*; use super::{shape, Decoration, ShapedText, Spacing}; use crate::style::TextStyle; use crate::util::{EcoString, RangeExt, RcExt, SliceExt}; /// `par`: Configure paragraphs. pub fn par(ctx: &mut EvalContext, args: &mut Args) -> TypResult { let spacing = args.named("spacing")?; let leading = args.named("leading")?; let mut dir = args.named::("lang")?.map(|iso| { match iso.to_ascii_lowercase().as_str() { "ar" | "he" | "fa" | "ur" | "ps" | "yi" => Dir::RTL, "en" | "fr" | "de" => Dir::LTR, _ => Dir::LTR, } }); if let Some(Spanned { v, span }) = args.named::>("dir")? { if v.axis() == SpecAxis::Horizontal { dir = Some(v) } else { bail!(span, "must be horizontal"); } } ctx.template.modify(move |style| { let par = style.par_mut(); if let Some(dir) = dir { par.dir = dir; } if let Some(leading) = leading { par.leading = leading; } if let Some(spacing) = spacing { par.spacing = spacing; } }); ctx.template.parbreak(); Ok(Value::None) } /// A node that arranges its children into a paragraph. #[derive(Debug, Hash)] pub struct ParNode { /// The inline direction of this paragraph. pub dir: Dir, /// The spacing to insert between each line. pub leading: Length, /// The children to be arranged in a paragraph. pub children: Vec, } impl Layout for ParNode { fn layout( &self, ctx: &mut LayoutContext, regions: &Regions, ) -> Vec>> { // Collect all text into one string used for BiDi analysis. let text = self.collect_text(); // Find out the BiDi embedding levels. let bidi = BidiInfo::new(&text, Level::from_dir(self.dir)); // Prepare paragraph layout by building a representation on which we can // do line breaking without layouting each and every line from scratch. let layouter = ParLayouter::new(self, ctx, regions, bidi); // Find suitable linebreaks. layouter.layout(ctx, regions.clone()) } } impl ParNode { /// Concatenate all text in the paragraph into one string, replacing spacing /// with a space character and other non-text nodes with the object /// replacement character. Returns the full text alongside the range each /// child spans in the text. fn collect_text(&self) -> String { let mut text = String::new(); for string in self.strings() { text.push_str(string); } text } /// The range of each item in the collected text. fn ranges(&self) -> impl Iterator + '_ { let mut cursor = 0; self.strings().map(move |string| { let start = cursor; cursor += string.len(); start .. cursor }) } /// The string representation of each child. fn strings(&self) -> impl Iterator { self.children.iter().map(|child| match child { ParChild::Spacing(_) => " ", ParChild::Text(ref piece, ..) => piece, ParChild::Node(..) => "\u{FFFC}", ParChild::Decorate(_) | ParChild::Undecorate => "", }) } } /// A child of a paragraph node. #[derive(Hash)] pub enum ParChild { /// Spacing between other nodes. Spacing(Spacing), /// A run of text and how to align it in its line. Text(EcoString, Align, Rc), /// Any child node and how to align it in its line. Node(PackedNode, Align), /// A decoration that applies until a matching `Undecorate`. Decorate(Decoration), /// The end of a decoration. Undecorate, } impl Debug for ParChild { fn fmt(&self, f: &mut Formatter) -> fmt::Result { match self { Self::Spacing(v) => write!(f, "Spacing({:?})", v), Self::Text(text, ..) => write!(f, "Text({:?})", text), Self::Node(node, ..) => node.fmt(f), Self::Decorate(deco) => write!(f, "Decorate({:?})", deco), Self::Undecorate => write!(f, "Undecorate"), } } } /// A paragraph representation in which children are already layouted and text /// is separated into shapable runs. struct ParLayouter<'a> { /// The top-level direction. dir: Dir, /// The line spacing. leading: Length, /// Bidirectional text embedding levels for the paragraph. bidi: BidiInfo<'a>, /// Spacing, separated text runs and layouted nodes. items: Vec>, /// The ranges of the items in `bidi.text`. ranges: Vec, /// The decorations and the ranges they span. decos: Vec<(Range, &'a Decoration)>, } /// Range of a substring of text. type Range = std::ops::Range; /// A prepared item in a paragraph layout. enum ParItem<'a> { /// Absolute spacing between other items. Absolute(Length), /// Fractional spacing between other items. Fractional(Fractional), /// A shaped text run with consistent direction. Text(ShapedText<'a>, Align), /// A layouted child node. Frame(Frame, Align), } impl<'a> ParLayouter<'a> { /// Prepare initial shaped text and layouted children. fn new( par: &'a ParNode, ctx: &mut LayoutContext, regions: &Regions, bidi: BidiInfo<'a>, ) -> Self { let mut items = vec![]; let mut ranges = vec![]; let mut starts = vec![]; let mut decos = vec![]; // Layout the children and collect them into items. for (range, child) in par.ranges().zip(&par.children) { match *child { ParChild::Spacing(Spacing::Linear(v)) => { let resolved = v.resolve(regions.current.w); items.push(ParItem::Absolute(resolved)); ranges.push(range); } ParChild::Spacing(Spacing::Fractional(v)) => { items.push(ParItem::Fractional(v)); ranges.push(range); } ParChild::Text(_, align, ref style) => { // TODO: Also split by language and script. let mut cursor = range.start; for (level, group) in bidi.levels[range].group_by_key(|&lvl| lvl) { let start = cursor; cursor += group.len(); let subrange = start .. cursor; let text = &bidi.text[subrange.clone()]; let shaped = shape(ctx, text, style, level.dir()); items.push(ParItem::Text(shaped, align)); ranges.push(subrange); } } ParChild::Node(ref node, align) => { let size = Size::new(regions.current.w, regions.base.h); let expand = Spec::splat(false); let pod = Regions::one(size, regions.base, expand); let frame = node.layout(ctx, &pod).remove(0); items.push(ParItem::Frame(Rc::take(frame.item), align)); ranges.push(range); } ParChild::Decorate(ref deco) => { starts.push((range.start, deco)); } ParChild::Undecorate => { let (start, deco) = starts.pop().unwrap(); decos.push((start .. range.end, deco)); } } } Self { dir: par.dir, leading: par.leading, bidi, items, ranges, decos, } } /// Find first-fit line breaks and build the paragraph. fn layout( self, ctx: &mut LayoutContext, regions: Regions, ) -> Vec>> { let mut stack = LineStack::new(self.leading, regions); // The current line attempt. // Invariant: Always fits into `stack.regions.current`. let mut last = None; // The start of the line in `last`. let mut start = 0; // Find suitable line breaks. // TODO: Provide line break opportunities on alignment changes. for (end, mandatory) in LineBreakIterator::new(self.bidi.text) { // Compute the line and its size. let mut line = LineLayout::new(ctx, &self, start .. end); // If the line doesn't fit anymore, we push the last fitting attempt // into the stack and rebuild the line from its end. The resulting // line cannot be broken up further. if !stack.regions.current.fits(line.size) { if let Some((last_line, last_end)) = last.take() { // Since the new line try did not fit, no region that would // fit the line will yield the same line break. Therefore, // the width of the region must not fit the width of the // tried line. if !stack.regions.current.w.fits(line.size.w) { stack.cts.max.x.set_min(line.size.w); } // Same as above, but for height. if !stack.regions.current.h.fits(line.size.h) { let too_large = stack.size.h + self.leading + line.size.h; stack.cts.max.y.set_min(too_large); } stack.push(last_line); stack.cts.min.y = Some(stack.size.h); start = last_end; line = LineLayout::new(ctx, &self, start .. end); } } // If the line does not fit vertically, we start a new region. while !stack.regions.current.h.fits(line.size.h) { if stack.regions.in_full_last() { stack.overflowing = true; break; } // Again, the line must not fit. It would if the space taken up // plus the line height would fit, therefore the constraint // below. let too_large = stack.size.h + self.leading + line.size.h; stack.cts.max.y.set_min(too_large); stack.finish_region(ctx); } // If the line does not fit horizontally or we have a mandatory // line break (i.e. due to "\n"), we push the line into the // stack. if mandatory || !stack.regions.current.w.fits(line.size.w) { start = end; last = None; stack.push(line); // If there is a trailing line break at the end of the // paragraph, we want to force an empty line. if mandatory && end == self.bidi.text.len() { let line = LineLayout::new(ctx, &self, end .. end); if stack.regions.current.h.fits(line.size.h) { stack.push(line); } } stack.cts.min.y = Some(stack.size.h); } else { // Otherwise, the line fits both horizontally and vertically // and we remember it. stack.cts.min.x.set_max(line.size.w); last = Some((line, end)); } } if let Some((line, _)) = last { stack.push(line); stack.cts.min.y = Some(stack.size.h); } stack.finish(ctx) } /// Find the index of the item whose range contains the `text_offset`. fn find(&self, text_offset: usize) -> Option { self.ranges.binary_search_by(|r| r.locate(text_offset)).ok() } } /// A lightweight representation of a line that spans a specific range in a /// paragraph's text. This type enables you to cheaply measure the size of a /// line in a range before comitting to building the line's frame. struct LineLayout<'a> { /// Bidi information about the paragraph. par: &'a ParLayouter<'a>, /// The range the line spans in the paragraph. line: Range, /// A reshaped text item if the line sliced up a text item at the start. first: Option>, /// Middle items which don't need to be reprocessed. items: &'a [ParItem<'a>], /// A reshaped text item if the line sliced up a text item at the end. If /// there is only one text item, this takes precedence over `first`. last: Option>, /// The ranges, indexed as `[first, ..items, last]`. The ranges for `first` /// and `last` aren't trimmed to the line, but it doesn't matter because /// we're just checking which range an index falls into. ranges: &'a [Range], /// The size of the line. size: Size, /// The baseline of the line. baseline: Length, /// The sum of fractional ratios in the line. fr: Fractional, } impl<'a> LineLayout<'a> { /// Create a line which spans the given range. fn new(ctx: &mut LayoutContext, par: &'a ParLayouter<'a>, mut line: Range) -> Self { // Find the items which bound the text range. let last_idx = par.find(line.end.saturating_sub(1)).unwrap(); let first_idx = if line.is_empty() { last_idx } else { par.find(line.start).unwrap() }; // Slice out the relevant items and ranges. let mut items = &par.items[first_idx ..= last_idx]; let ranges = &par.ranges[first_idx ..= last_idx]; // Reshape the last item if it's split in half. let mut last = None; if let Some((ParItem::Text(shaped, align), rest)) = items.split_last() { // Compute the range we want to shape, trimming whitespace at the // end of the line. let base = par.ranges[last_idx].start; let start = line.start.max(base); let end = start + par.bidi.text[start .. line.end].trim_end().len(); let range = start - base .. end - base; // Reshape if necessary. if range.len() < shaped.text.len() { // If start == end and the rest is empty, then we have an empty // line. To make that line have the appropriate height, we shape the // empty string. if !range.is_empty() || rest.is_empty() { // Reshape that part. let reshaped = shaped.reshape(ctx, range); last = Some(ParItem::Text(reshaped, *align)); } items = rest; line.end = end; } } // Reshape the start item if it's split in half. let mut first = None; if let Some((ParItem::Text(shaped, align), rest)) = items.split_first() { // Compute the range we want to shape. let Range { start: base, end: first_end } = par.ranges[first_idx]; let start = line.start; let end = line.end.min(first_end); let range = start - base .. end - base; // Reshape if necessary. if range.len() < shaped.text.len() { if !range.is_empty() { let reshaped = shaped.reshape(ctx, range); first = Some(ParItem::Text(reshaped, *align)); } items = rest; } } let mut width = Length::zero(); let mut top = Length::zero(); let mut bottom = Length::zero(); let mut fr = Fractional::zero(); // Measure the size of the line. for item in first.iter().chain(items).chain(&last) { match *item { ParItem::Absolute(v) => width += v, ParItem::Fractional(v) => fr += v, ParItem::Text(ShapedText { size, baseline, .. }, _) | ParItem::Frame(Frame { size, baseline, .. }, _) => { width += size.w; top.set_max(baseline); bottom.set_max(size.h - baseline); } } } Self { par, line, first, items, last, ranges, size: Size::new(width, top + bottom), baseline: top, fr, } } /// Build the line's frame. fn build(&self, ctx: &LayoutContext, width: Length) -> Frame { let size = Size::new(self.size.w.max(width), self.size.h); let remaining = size.w - self.size.w; let mut output = Frame::new(size, self.baseline); let mut offset = Length::zero(); let mut ruler = Align::Start; for (range, item) in self.reordered() { let mut position = |mut frame: Frame, align: Align| { // Decorate. for (deco_range, deco) in &self.par.decos { if deco_range.contains(&range.start) { deco.apply(ctx, &mut frame); } } // FIXME: Ruler alignment for RTL. ruler = ruler.max(align); let x = ruler.resolve(self.par.dir, offset .. remaining + offset); let y = self.baseline - frame.baseline; offset += frame.size.w; // Add to the line's frame. output.merge_frame(Point::new(x, y), frame); }; match *item { ParItem::Absolute(v) => offset += v, ParItem::Fractional(v) => { let ratio = v / self.fr; if remaining.is_finite() && ratio.is_finite() { offset += ratio * remaining; } } ParItem::Text(ref shaped, align) => position(shaped.build(), align), ParItem::Frame(ref frame, align) => position(frame.clone(), align), } } output } /// Iterate through the line's items in visual order. fn reordered(&self) -> impl Iterator)> { // The bidi crate doesn't like empty lines. let (levels, runs) = if !self.line.is_empty() { // Find the paragraph that contains the line. let para = self .par .bidi .paragraphs .iter() .find(|para| para.range.contains(&self.line.start)) .unwrap(); // Compute the reordered ranges in visual order (left to right). self.par.bidi.visual_runs(para, self.line.clone()) } else { <_>::default() }; runs.into_iter() .flat_map(move |run| { let first_idx = self.find(run.start).unwrap(); let last_idx = self.find(run.end - 1).unwrap(); let range = first_idx ..= last_idx; // Provide the items forwards or backwards depending on the run's // direction. if levels[run.start].is_ltr() { Either::Left(range) } else { Either::Right(range.rev()) } }) .map(move |idx| (self.ranges[idx].clone(), self.get(idx).unwrap())) } /// Find the index of the item whose range contains the `text_offset`. fn find(&self, text_offset: usize) -> Option { self.ranges.binary_search_by(|r| r.locate(text_offset)).ok() } /// Get the item at the index. fn get(&self, index: usize) -> Option<&ParItem<'a>> { self.first.iter().chain(self.items).chain(&self.last).nth(index) } } /// Stacks lines on top of each other. struct LineStack<'a> { leading: Length, full: Size, regions: Regions, size: Size, lines: Vec>, finished: Vec>>, cts: Constraints, overflowing: bool, fractional: bool, } impl<'a> LineStack<'a> { /// Create an empty line stack. fn new(leading: Length, regions: Regions) -> Self { Self { leading, full: regions.current, cts: Constraints::new(regions.expand), regions, size: Size::zero(), lines: vec![], finished: vec![], overflowing: false, fractional: false, } } /// Push a new line into the stack. fn push(&mut self, line: LineLayout<'a>) { self.regions.current.h -= line.size.h + self.leading; self.size.w.set_max(line.size.w); self.size.h += line.size.h; if !self.lines.is_empty() { self.size.h += self.leading; } self.fractional |= !line.fr.is_zero(); self.lines.push(line); } /// Finish the frame for one region. fn finish_region(&mut self, ctx: &LayoutContext) { if self.regions.expand.x || self.fractional { self.size.w = self.regions.current.w; self.cts.exact.x = Some(self.regions.current.w); } if self.overflowing { self.cts.min.y = None; self.cts.max.y = None; self.cts.exact = self.full.to_spec().map(Some); } let mut output = Frame::new(self.size, self.size.h); let mut offset = Length::zero(); let mut first = true; for line in self.lines.drain(..) { let frame = line.build(ctx, self.size.w); let pos = Point::new(Length::zero(), offset); if first { output.baseline = pos.y + frame.baseline; first = false; } offset += frame.size.h + self.leading; output.merge_frame(pos, frame); } self.finished.push(output.constrain(self.cts)); self.regions.next(); self.full = self.regions.current; self.cts = Constraints::new(self.regions.expand); self.size = Size::zero(); } /// Finish the last region and return the built frames. fn finish(mut self, ctx: &LayoutContext) -> Vec>> { self.finish_region(ctx); self.finished } } /// Additional methods for BiDi levels. trait LevelExt: Sized { fn from_dir(dir: Dir) -> Option; fn dir(self) -> Dir; } impl LevelExt for Level { fn from_dir(dir: Dir) -> Option { match dir { Dir::LTR => Some(Level::ltr()), Dir::RTL => Some(Level::rtl()), _ => None, } } fn dir(self) -> Dir { if self.is_ltr() { Dir::LTR } else { Dir::RTL } } }