use std::fmt::{self, Debug, Formatter}; use std::rc::Rc; use unicode_bidi::{BidiInfo, Level}; use xi_unicode::LineBreakIterator; use super::*; use crate::eval::FontState; use crate::util::{EcoString, RangeExt, SliceExt}; type Range = std::ops::Range; /// A node that arranges its children into a paragraph. #[derive(Debug)] #[cfg_attr(feature = "layout-cache", derive(Hash))] pub struct ParNode { /// The inline direction of this paragraph. pub dir: Dir, /// The spacing to insert between each line. pub line_spacing: Length, /// The nodes to be arranged in a paragraph. pub children: Vec, } /// A child of a paragraph node. #[cfg_attr(feature = "layout-cache", derive(Hash))] pub enum ParChild { /// Spacing between other nodes. Spacing(Linear), /// A run of text and how to align it in its line. Text(EcoString, Align, Rc, Vec), /// Any child node and how to align it in its line. Any(LayoutNode, Align, Vec), } impl Layout for ParNode { fn layout( &self, ctx: &mut LayoutContext, regions: &Regions, ) -> Vec>> { // Collect all text into one string used for BiDi analysis. let text = self.collect_text(); // Find out the BiDi embedding levels. let bidi = BidiInfo::new(&text, Level::from_dir(self.dir)); // Prepare paragraph layout by building a representation on which we can // do line breaking without layouting each and every line from scratch. let layouter = ParLayouter::new(self, ctx, regions, bidi); // Find suitable linebreaks. layouter.layout(ctx, regions.clone()) } } impl ParNode { /// Concatenate all text in the paragraph into one string, replacing spacing /// with a space character and other non-text nodes with the object /// replacement character. Returns the full text alongside the range each /// child spans in the text. fn collect_text(&self) -> String { let mut text = String::new(); for string in self.strings() { text.push_str(string); } text } /// The range of each item in the collected text. fn ranges(&self) -> impl Iterator + '_ { let mut cursor = 0; self.strings().map(move |string| { let start = cursor; cursor += string.len(); start .. cursor }) } /// The string representation of each child. fn strings(&self) -> impl Iterator { self.children.iter().map(|child| match child { ParChild::Spacing(_) => " ", ParChild::Text(ref piece, ..) => piece, ParChild::Any(..) => "\u{FFFC}", }) } } impl From for LayoutNode { fn from(par: ParNode) -> Self { Self::new(par) } } impl Debug for ParChild { fn fmt(&self, f: &mut Formatter) -> fmt::Result { match self { ParChild::Spacing(v) => write!(f, "Spacing({:?})", v), ParChild::Text(text, ..) => write!(f, "Text({:?})", text), ParChild::Any(node, ..) => f.debug_tuple("Any").field(node).finish(), } } } /// A paragraph representation in which children are already layouted and text /// is separated into shapable runs. struct ParLayouter<'a> { /// The top-level direction. dir: Dir, /// The line spacing. line_spacing: Length, /// Bidirectional text embedding levels for the paragraph. bidi: BidiInfo<'a>, /// Layouted children and separated text runs. items: Vec>, /// The ranges of the items in `bidi.text`. ranges: Vec, } impl<'a> ParLayouter<'a> { /// Prepare initial shaped text and layouted children. fn new( par: &'a ParNode, ctx: &mut LayoutContext, regions: &Regions, bidi: BidiInfo<'a>, ) -> Self { // Prepare an iterator over each child an the range it spans. let mut items = vec![]; let mut ranges = vec![]; // Layout the children and collect them into items. for (range, child) in par.ranges().zip(&par.children) { match child { ParChild::Spacing(amount) => { let resolved = amount.resolve(regions.current.w); items.push(ParItem::Spacing(resolved)); ranges.push(range); } ParChild::Text(_, align, state, decos) => { // TODO: Also split by language and script. for (subrange, dir) in split_runs(&bidi, range) { let text = &bidi.text[subrange.clone()]; let shaped = shape(ctx, text, dir, state); items.push(ParItem::Text(shaped, *align, decos)); ranges.push(subrange); } } ParChild::Any(node, align, decos) => { let frame = node.layout(ctx, regions).remove(0); items.push(ParItem::Frame(frame.item, *align, decos)); ranges.push(range); } } } Self { dir: par.dir, line_spacing: par.line_spacing, bidi, items, ranges, } } /// Find first-fit line breaks and build the paragraph. fn layout( self, ctx: &mut LayoutContext, regions: Regions, ) -> Vec>> { let mut stack = LineStack::new(self.line_spacing, regions); // The current line attempt. // Invariant: Always fits into `stack.regions.current`. let mut last = None; // The start of the line in `last`. let mut start = 0; // Find suitable line breaks. // TODO: Provide line break opportunities on alignment changes. for (end, mandatory) in LineBreakIterator::new(self.bidi.text) { // Compute the line and its size. let mut line = LineLayout::new(ctx, &self, start .. end); // If the line doesn't fit anymore, we push the last fitting attempt // into the stack and rebuild the line from its end. The resulting // line cannot be broken up further. if !stack.regions.current.fits(line.size) { if let Some((last_line, last_end)) = last.take() { // Since the new line try did not fit, no region that would // fit the line will yield the same line break. Therefore, // the width of the region must not fit the width of the // tried line. if !stack.regions.current.w.fits(line.size.w) { stack.constraints.max.x.set_min(line.size.w); } // Same as above, but for height. if !stack.regions.current.h.fits(line.size.h) { let too_large = stack.size.h + self.line_spacing + line.size.h; stack.constraints.max.y.set_min(too_large); } stack.push(last_line); stack.constraints.min.y = Some(stack.size.h); start = last_end; line = LineLayout::new(ctx, &self, start .. end); } } // If the line does not fit vertically, we start a new region. while !stack.regions.current.h.fits(line.size.h) { if stack.regions.in_full_last() { stack.overflowing = true; break; } // Again, the line must not fit. It would if the space taken up // plus the line height would fit, therefore the constraint // below. let too_large = stack.size.h + self.line_spacing + line.size.h; stack.constraints.max.y.set_min(too_large); stack.finish_region(ctx); } // If the line does not fit horizontally or we have a mandatory // line break (i.e. due to "\n"), we push the line into the // stack. if mandatory || !stack.regions.current.w.fits(line.size.w) { start = end; last = None; stack.push(line); // If there is a trailing line break at the end of the // paragraph, we want to force an empty line. if mandatory && end == self.bidi.text.len() { let line = LineLayout::new(ctx, &self, end .. end); if stack.regions.current.h.fits(line.size.h) { stack.push(line); } } stack.constraints.min.y = Some(stack.size.h); } else { // Otherwise, the line fits both horizontally and vertically // and we remember it. stack.constraints.min.x.set_max(line.size.w); last = Some((line, end)); } } if let Some((line, _)) = last { stack.push(line); stack.constraints.min.y = Some(stack.size.h); } stack.finish(ctx) } /// Find the index of the item whose range contains the `text_offset`. fn find(&self, text_offset: usize) -> Option { self.ranges.binary_search_by(|r| r.locate(text_offset)).ok() } } /// Split a range of text into runs of consistent direction. fn split_runs<'a>( bidi: &'a BidiInfo, range: Range, ) -> impl Iterator + 'a { let mut cursor = range.start; bidi.levels[range] .group_by_key(|&level| level) .map(move |(level, group)| { let start = cursor; cursor += group.len(); (start .. cursor, level.dir()) }) } /// A prepared item in a paragraph layout. enum ParItem<'a> { /// Spacing between other items. Spacing(Length), /// A shaped text run with consistent direction. Text(ShapedText<'a>, Align, &'a [Decoration]), /// A layouted child node. Frame(Rc, Align, &'a [Decoration]), } impl ParItem<'_> { /// The size of the item. pub fn size(&self) -> Size { match self { Self::Spacing(amount) => Size::new(*amount, Length::zero()), Self::Text(shaped, ..) => shaped.size, Self::Frame(frame, ..) => frame.size, } } /// The baseline of the item. pub fn baseline(&self) -> Length { match self { Self::Spacing(_) => Length::zero(), Self::Text(shaped, ..) => shaped.baseline, Self::Frame(frame, ..) => frame.baseline, } } } /// A lightweight representation of a line that spans a specific range in a /// paragraph's text. This type enables you to cheaply measure the size of a /// line in a range before comitting to building the line's frame. struct LineLayout<'a> { /// The direction of the line. dir: Dir, /// Bidi information about the paragraph. bidi: &'a BidiInfo<'a>, /// The range the line spans in the paragraph. line: Range, /// A reshaped text item if the line sliced up a text item at the start. first: Option>, /// Middle items which don't need to be reprocessed. items: &'a [ParItem<'a>], /// A reshaped text item if the line sliced up a text item at the end. If /// there is only one text item, this takes precedence over `first`. last: Option>, /// The ranges, indexed as `[first, ..items, last]`. The ranges for `first` /// and `last` aren't trimmed to the line, but it doesn't matter because /// we're just checking which range an index falls into. ranges: &'a [Range], /// The size of the line. size: Size, /// The baseline of the line. baseline: Length, } impl<'a> LineLayout<'a> { /// Create a line which spans the given range. fn new(ctx: &mut LayoutContext, par: &'a ParLayouter<'a>, mut line: Range) -> Self { // Find the items which bound the text range. let last_idx = par.find(line.end.saturating_sub(1)).unwrap(); let first_idx = if line.is_empty() { last_idx } else { par.find(line.start).unwrap() }; // Slice out the relevant items and ranges. let mut items = &par.items[first_idx ..= last_idx]; let ranges = &par.ranges[first_idx ..= last_idx]; // Reshape the last item if it's split in half. let mut last = None; if let Some((ParItem::Text(shaped, align, i), rest)) = items.split_last() { // Compute the range we want to shape, trimming whitespace at the // end of the line. let base = par.ranges[last_idx].start; let start = line.start.max(base); let end = start + par.bidi.text[start .. line.end].trim_end().len(); let range = start - base .. end - base; // Reshape if necessary. if range.len() < shaped.text.len() { // If start == end and the rest is empty, then we have an empty // line. To make that line have the appropriate height, we shape the // empty string. if !range.is_empty() || rest.is_empty() { // Reshape that part. let reshaped = shaped.reshape(ctx, range); last = Some(ParItem::Text(reshaped, *align, *i)); } items = rest; line.end = end; } } // Reshape the start item if it's split in half. let mut first = None; if let Some((ParItem::Text(shaped, align, i), rest)) = items.split_first() { // Compute the range we want to shape. let Range { start: base, end: first_end } = par.ranges[first_idx]; let start = line.start; let end = line.end.min(first_end); let range = start - base .. end - base; // Reshape if necessary. if range.len() < shaped.text.len() { if !range.is_empty() { let reshaped = shaped.reshape(ctx, range); first = Some(ParItem::Text(reshaped, *align, *i)); } items = rest; } } let mut width = Length::zero(); let mut top = Length::zero(); let mut bottom = Length::zero(); // Measure the size of the line. for item in first.iter().chain(items).chain(&last) { let size = item.size(); let baseline = item.baseline(); width += size.w; top.set_max(baseline); bottom.set_max(size.h - baseline); } Self { dir: par.dir, bidi: &par.bidi, line, first, items, last, ranges, size: Size::new(width, top + bottom), baseline: top, } } /// Build the line's frame. fn build(&self, ctx: &LayoutContext, width: Length) -> Frame { let size = Size::new(self.size.w.max(width), self.size.h); let free = size.w - self.size.w; let mut output = Frame::new(size, self.baseline); let mut offset = Length::zero(); let mut ruler = Align::Start; self.reordered(ctx, |ctx, item| { let mut position = |frame: &Frame, align| { // FIXME: Ruler alignment for RTL. ruler = ruler.max(align); let x = ruler.resolve(self.dir, offset .. free + offset); let y = self.baseline - frame.baseline; offset += frame.size.w; Point::new(x, y) }; match *item { ParItem::Spacing(amount) => { offset += amount; } ParItem::Text(ref shaped, align, decos) => { let mut frame = shaped.build(); for deco in decos { deco.apply(ctx, &mut frame); } let pos = position(&frame, align); output.merge_frame(pos, frame); } ParItem::Frame(ref frame, align, decos) => { let mut frame = frame.clone(); for deco in decos { deco.apply(ctx, Rc::make_mut(&mut frame)); } let pos = position(&frame, align); output.push_frame(pos, frame); } } }); output } /// Iterate through the line's items in visual order. fn reordered(&self, ctx: &LayoutContext, mut f: F) where F: FnMut(&LayoutContext, &ParItem<'a>), { // The bidi crate doesn't like empty lines. if self.line.is_empty() { return; } // Find the paragraph that contains the line. let para = self .bidi .paragraphs .iter() .find(|para| para.range.contains(&self.line.start)) .unwrap(); // Compute the reordered ranges in visual order (left to right). let (levels, runs) = self.bidi.visual_runs(para, self.line.clone()); // Find the items for each run. for run in runs { let first_idx = self.find(run.start).unwrap(); let last_idx = self.find(run.end - 1).unwrap(); let range = first_idx ..= last_idx; // Provide the items forwards or backwards depending on the run's // direction. if levels[run.start].is_ltr() { for item in range { f(ctx, self.get(item).unwrap()); } } else { for item in range.rev() { f(ctx, self.get(item).unwrap()); } } } } /// Find the index of the item whose range contains the `text_offset`. fn find(&self, text_offset: usize) -> Option { self.ranges.binary_search_by(|r| r.locate(text_offset)).ok() } /// Get the item at the index. fn get(&self, index: usize) -> Option<&ParItem<'a>> { self.first.iter().chain(self.items).chain(&self.last).nth(index) } } /// Stacks lines on top of each other. struct LineStack<'a> { line_spacing: Length, full: Size, regions: Regions, size: Size, lines: Vec>, finished: Vec>>, constraints: Constraints, overflowing: bool, } impl<'a> LineStack<'a> { /// Create an empty line stack. fn new(line_spacing: Length, regions: Regions) -> Self { Self { line_spacing, full: regions.current, constraints: Constraints::new(regions.expand), regions, size: Size::zero(), lines: vec![], finished: vec![], overflowing: false, } } /// Push a new line into the stack. fn push(&mut self, line: LineLayout<'a>) { self.regions.current.h -= line.size.h + self.line_spacing; self.size.w.set_max(line.size.w); self.size.h += line.size.h; if !self.lines.is_empty() { self.size.h += self.line_spacing; } self.lines.push(line); } /// Finish the frame for one region. fn finish_region(&mut self, ctx: &LayoutContext) { if self.regions.expand.x { self.size.w = self.regions.current.w; self.constraints.exact.x = Some(self.regions.current.w); } if self.overflowing { self.constraints.min.y = None; self.constraints.max.y = None; self.constraints.exact = self.full.to_spec().map(Some); } let mut output = Frame::new(self.size, self.size.h); let mut offset = Length::zero(); let mut first = true; for line in self.lines.drain(..) { let frame = line.build(ctx, self.size.w); let pos = Point::new(Length::zero(), offset); if first { output.baseline = pos.y + frame.baseline; first = false; } offset += frame.size.h + self.line_spacing; output.merge_frame(pos, frame); } self.finished.push(output.constrain(self.constraints)); self.regions.next(); self.full = self.regions.current; self.constraints = Constraints::new(self.regions.expand); self.size = Size::zero(); } /// Finish the last region and return the built frames. fn finish(mut self, ctx: &LayoutContext) -> Vec>> { self.finish_region(ctx); self.finished } } /// A decoration for a paragraph child. #[derive(Debug, Clone, Eq, PartialEq, Hash)] pub enum Decoration { /// A link. Link(EcoString), /// An underline/strikethrough/overline decoration. Line(LineDecoration), } /// Defines a line that is positioned over, under or on top of text. #[derive(Debug, Clone, Eq, PartialEq, Hash)] pub struct LineDecoration { /// The kind of line. pub kind: LineKind, /// Stroke color of the line, defaults to the text color if `None`. pub stroke: Option, /// Thickness of the line's strokes (dependent on scaled font size), read /// from the font tables if `None`. pub thickness: Option, /// Position of the line relative to the baseline (dependent on scaled font /// size), read from the font tables if `None`. pub offset: Option, /// Amount that the line will be longer or shorter than its associated text /// (dependent on scaled font size). pub extent: Linear, } /// The kind of line decoration. #[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)] pub enum LineKind { /// A line under text. Underline, /// A line through text. Strikethrough, /// A line over text. Overline, } impl Decoration { /// Apply a decoration to a child's frame. pub fn apply(&self, ctx: &LayoutContext, frame: &mut Frame) { match self { Decoration::Link(href) => { let link = Element::Link(href.to_string(), frame.size); frame.push(Point::zero(), link); } Decoration::Line(line) => { line.apply(ctx, frame); } } } } impl LineDecoration { /// Apply a line decoration to a all text elements in a frame. pub fn apply(&self, ctx: &LayoutContext, frame: &mut Frame) { for i in 0 .. frame.children.len() { let (pos, child) = &frame.children[i]; if let FrameChild::Element(Element::Text(text)) = child { let face = ctx.fonts.get(text.face_id); let metrics = match self.kind { LineKind::Underline => face.underline, LineKind::Strikethrough => face.strikethrough, LineKind::Overline => face.overline, }; let stroke = self.stroke.unwrap_or(text.fill); let thickness = self .thickness .map(|s| s.resolve(text.size)) .unwrap_or(metrics.strength.to_length(text.size)); let offset = self .offset .map(|s| s.resolve(text.size)) .unwrap_or(-metrics.position.to_length(text.size)); let extent = self.extent.resolve(text.size); let subpos = Point::new(pos.x - extent, pos.y + offset); let vector = Point::new(text.width + 2.0 * extent, Length::zero()); let line = Geometry::Line(vector, thickness); frame.push(subpos, Element::Geometry(line, stroke)); } } } } /// Additional methods for BiDi levels. trait LevelExt: Sized { fn from_dir(dir: Dir) -> Option; fn dir(self) -> Dir; } impl LevelExt for Level { fn from_dir(dir: Dir) -> Option { match dir { Dir::LTR => Some(Level::ltr()), Dir::RTL => Some(Level::rtl()), _ => None, } } fn dir(self) -> Dir { if self.is_ltr() { Dir::LTR } else { Dir::RTL } } }