// Test t and b attachments. --- // Test basics, postscripts. $f_x + t^b + V_1^2 + attach(A, t: alpha, b: beta)$ --- // Test basics, prescripts. Notably, the upper and lower prescripts' content need to be // aligned on the right edge of their bounding boxes, not on the left as in postscripts. $ attach(upright(O), bl: 8, tl: 16, br: 2, tr: 2-), attach("Pb", bl: 82, tl: 207) + attach(upright(e), bl: -1, tl: 0) + macron(v)_e \ $ --- // A mixture of attachment positioning schemes. $ attach(a, tl: u), attach(a, tr: v), attach(a, bl: x), attach(a, br: y), limits(a)^t, limits(a)_b \ attach(a, tr: v, t: t), attach(a, tr: v, br: y), attach(a, br: y, b: b), attach(limits(a), b: b, bl: x), attach(a, tl: u, bl: x), attach(limits(a), t: t, tl: u) \ attach(a, tl: u, tr: v), attach(limits(a), t: t, br: y), attach(limits(a), b: b, tr: v), attach(a, bl: x, br: y), attach(limits(a), b: b, tl: u), attach(limits(a), t: t, bl: u), limits(a)^t_b \ attach(a, tl: u, tr: v, bl: x, br: y), attach(limits(a), t: t, bl: x, br: y, b: b), attach(limits(a), t: t, tl: u, tr: v, b: b), attach(limits(a), tl: u, bl: x, t: t, b: b), attach(limits(a), t: t, b: b, tr: v, br: y), attach(a, tl: u, t: t, tr: v, bl: x, b: b, br: y) $ --- // Test function call after subscript. $pi_1(Y), a_f(x), a^zeta(x) \ a^subset.eq(x), a_(zeta(x)), pi_(1(Y))$ --- // Test associativity and scaling. $ 1/(V^2^3^4^5), 1/attach(V, tl: attach(2, tl: attach(3, tl: attach(4, tl: 5)))), attach(Omega, tl: attach(2, tl: attach(3, tl: attach(4, tl: 5))), tr: attach(2, tr: attach(3, tr: attach(4, tr: 5))), bl: attach(2, bl: attach(3, bl: attach(4, bl: 5))), br: attach(2, br: attach(3, br: attach(4, br: 5))), ) $ --- // Test high subscript and superscript. $ sqrt(a_(1/2)^zeta), sqrt(a_alpha^(1/2)), sqrt(a_(1/2)^(3/4)) \ sqrt(attach(a, tl: 1/2, bl: 3/4)), sqrt(attach(a, tl: 1/2, bl: 3/4, tr: 1/2, br: 3/4)) $ --- // Test frame base. $ (-1)^n + (1/2 + 3)^(-1/2) $ --- // Test limit. $ lim_(n->oo \ n "grows") sum_(k=0 \ k in NN)^n k $ --- // Test forcing scripts and limits. $ limits(A)_1^2 != A_1^2 $ $ scripts(sum)_1^2 != sum_1^2 $ $ limits(integral)_a^b != integral_a^b $