//! Convert paint types from typst to krilla. use krilla::color::{self, cmyk, luma, rgb}; use krilla::num::NormalizedF32; use krilla::paint::{ Fill, LinearGradient, Pattern, RadialGradient, SpreadMethod, Stop, Stroke, StrokeDash, SweepGradient, }; use krilla::surface::Surface; use typst_library::diag::SourceResult; use typst_library::layout::{Abs, Angle, Quadrant, Ratio, Size, Transform}; use typst_library::visualize::{ Color, ColorSpace, DashPattern, FillRule, FixedStroke, Gradient, Paint, RatioOrAngle, RelativeTo, Tiling, WeightedColor, }; use typst_utils::Numeric; use crate::convert::{handle_frame, FrameContext, GlobalContext, State}; use crate::util::{AbsExt, FillRuleExt, LineCapExt, LineJoinExt, TransformExt}; pub(crate) fn convert_fill( gc: &mut GlobalContext, paint_: &Paint, fill_rule_: FillRule, on_text: bool, surface: &mut Surface, state: &State, size: Size, ) -> SourceResult { let (paint, opacity) = convert_paint(gc, paint_, on_text, surface, state, size)?; Ok(Fill { paint, rule: fill_rule_.to_krilla(), opacity: NormalizedF32::new(opacity as f32 / 255.0).unwrap(), }) } pub(crate) fn convert_stroke( fc: &mut GlobalContext, stroke: &FixedStroke, on_text: bool, surface: &mut Surface, state: &State, size: Size, ) -> SourceResult { let (paint, opacity) = convert_paint(fc, &stroke.paint, on_text, surface, state, size)?; Ok(Stroke { paint, width: stroke.thickness.to_f32(), miter_limit: stroke.miter_limit.get() as f32, line_join: stroke.join.to_krilla(), line_cap: stroke.cap.to_krilla(), opacity: NormalizedF32::new(opacity as f32 / 255.0).unwrap(), dash: stroke.dash.as_ref().map(convert_dash), }) } fn convert_paint( gc: &mut GlobalContext, paint: &Paint, on_text: bool, surface: &mut Surface, state: &State, mut size: Size, ) -> SourceResult<(krilla::paint::Paint, u8)> { // Edge cases for strokes. if size.x.is_zero() { size.x = Abs::pt(1.0); } if size.y.is_zero() { size.y = Abs::pt(1.0); } match paint { Paint::Solid(c) => { let (c, a) = convert_solid(c); Ok((c.into(), a)) } Paint::Gradient(g) => Ok(convert_gradient(g, on_text, state, size)), Paint::Tiling(p) => convert_pattern(gc, p, on_text, surface, state), } } fn convert_solid(color: &Color) -> (color::Color, u8) { match color.space() { ColorSpace::D65Gray => { let (c, a) = convert_luma(color); (c.into(), a) } ColorSpace::Cmyk => (convert_cmyk(color).into(), 255), // Convert all other colors in different colors spaces into RGB. _ => { let (c, a) = convert_rgb(color); (c.into(), a) } } } fn convert_cmyk(color: &Color) -> cmyk::Color { let components = color.to_space(ColorSpace::Cmyk).to_vec4_u8(); cmyk::Color::new(components[0], components[1], components[2], components[3]) } fn convert_rgb(color: &Color) -> (rgb::Color, u8) { let components = color.to_space(ColorSpace::Srgb).to_vec4_u8(); (rgb::Color::new(components[0], components[1], components[2]), components[3]) } fn convert_luma(color: &Color) -> (luma::Color, u8) { let components = color.to_space(ColorSpace::D65Gray).to_vec4_u8(); (luma::Color::new(components[0]), components[3]) } fn convert_pattern( gc: &mut GlobalContext, pattern: &Tiling, on_text: bool, surface: &mut Surface, state: &State, ) -> SourceResult<(krilla::paint::Paint, u8)> { let transform = correct_transform(state, pattern.unwrap_relative(on_text)); let mut stream_builder = surface.stream_builder(); let mut surface = stream_builder.surface(); let mut fc = FrameContext::new(pattern.frame().size()); handle_frame(&mut fc, pattern.frame(), None, &mut surface, gc)?; surface.finish(); let stream = stream_builder.finish(); let pattern = Pattern { stream, transform: transform.to_krilla(), width: (pattern.size().x + pattern.spacing().x).to_pt() as _, height: (pattern.size().y + pattern.spacing().y).to_pt() as _, }; Ok((pattern.into(), 255)) } fn convert_gradient( gradient: &Gradient, on_text: bool, state: &State, size: Size, ) -> (krilla::paint::Paint, u8) { let size = match gradient.unwrap_relative(on_text) { RelativeTo::Self_ => size, RelativeTo::Parent => state.container_size(), }; let angle = gradient.angle().unwrap_or_else(Angle::zero); let base_transform = correct_transform(state, gradient.unwrap_relative(on_text)); let stops = convert_gradient_stops(gradient); match &gradient { Gradient::Linear(_) => { let (x1, y1, x2, y2) = { let (mut sin, mut cos) = (angle.sin(), angle.cos()); // Scale to edges of unit square. let factor = cos.abs() + sin.abs(); sin *= factor; cos *= factor; match angle.quadrant() { Quadrant::First => (0.0, 0.0, cos as f32, sin as f32), Quadrant::Second => (1.0, 0.0, cos as f32 + 1.0, sin as f32), Quadrant::Third => (1.0, 1.0, cos as f32 + 1.0, sin as f32 + 1.0), Quadrant::Fourth => (0.0, 1.0, cos as f32, sin as f32 + 1.0), } }; let linear = LinearGradient { x1, y1, x2, y2, // x and y coordinates are normalized, so need to scale by the size. transform: base_transform .pre_concat(Transform::scale( Ratio::new(size.x.to_f32() as f64), Ratio::new(size.y.to_f32() as f64), )) .to_krilla(), spread_method: SpreadMethod::Pad, stops, anti_alias: gradient.anti_alias(), }; (linear.into(), 255) } Gradient::Radial(radial) => { let radial = RadialGradient { fx: radial.focal_center.x.get() as f32, fy: radial.focal_center.y.get() as f32, fr: radial.focal_radius.get() as f32, cx: radial.center.x.get() as f32, cy: radial.center.y.get() as f32, cr: radial.radius.get() as f32, transform: base_transform .pre_concat(Transform::scale( Ratio::new(size.x.to_f32() as f64), Ratio::new(size.y.to_f32() as f64), )) .to_krilla(), spread_method: SpreadMethod::Pad, stops, anti_alias: gradient.anti_alias(), }; (radial.into(), 255) } Gradient::Conic(conic) => { // Correct the gradient's angle. let cx = size.x.to_f32() * conic.center.x.get() as f32; let cy = size.y.to_f32() * conic.center.y.get() as f32; let actual_transform = base_transform // Adjust for the angle. .pre_concat(Transform::rotate_at( angle, Abs::pt(cx as f64), Abs::pt(cy as f64), )) // Default start point in krilla and typst are at the opposite side, so we need // to flip it horizontally. .pre_concat(Transform::scale_at( -Ratio::one(), Ratio::one(), Abs::pt(cx as f64), Abs::pt(cy as f64), )); let sweep = SweepGradient { cx, cy, start_angle: 0.0, end_angle: 360.0, transform: actual_transform.to_krilla(), spread_method: SpreadMethod::Pad, stops, anti_alias: gradient.anti_alias(), }; (sweep.into(), 255) } } } fn convert_gradient_stops(gradient: &Gradient) -> Vec { let mut stops = vec![]; let use_cmyk = gradient.stops().iter().all(|s| s.color.space() == ColorSpace::Cmyk); let mut add_single = |color: &Color, offset: Ratio| { let (color, opacity) = if use_cmyk { (convert_cmyk(color).into(), 255) } else { let (c, a) = convert_rgb(color); (c.into(), a) }; let opacity = NormalizedF32::new((opacity as f32) / 255.0).unwrap(); let offset = NormalizedF32::new(offset.get() as f32).unwrap(); let stop = Stop { offset, color, opacity }; stops.push(stop); }; // Convert stops. match &gradient { Gradient::Linear(_) | Gradient::Radial(_) => { if let Some(s) = gradient.stops().first() { add_single(&s.color, s.offset.unwrap()); } // Create the individual gradient functions for each pair of stops. for window in gradient.stops().windows(2) { let (first, second) = (window[0], window[1]); // If we have a hue index or are using Oklab, we will create several // stops in-between to make the gradient smoother without interpolation // issues with native color spaces. if gradient.space().hue_index().is_some() { for i in 0..=32 { let t = i as f64 / 32.0; let real_t = Ratio::new( first.offset.unwrap().get() * (1.0 - t) + second.offset.unwrap().get() * t, ); let c = gradient.sample(RatioOrAngle::Ratio(real_t)); add_single(&c, real_t); } } add_single(&second.color, second.offset.unwrap()); } } Gradient::Conic(conic) => { if let Some((c, t)) = conic.stops.first() { add_single(c, *t); } for window in conic.stops.windows(2) { let ((c0, t0), (c1, t1)) = (window[0], window[1]); // Precision: // - On an even color, insert a stop every 90deg. // - For a hue-based color space, insert 200 stops minimum. // - On any other, insert 20 stops minimum. let max_dt = if c0 == c1 { 0.25 } else if conic.space.hue_index().is_some() { 0.005 } else { 0.05 }; let mut t_x = t0.get(); let dt = (t1.get() - t0.get()).min(max_dt); // Special casing for sharp gradients. if t0 == t1 { add_single(&c1, t1); continue; } while t_x < t1.get() { let t_next = (t_x + dt).min(t1.get()); // The current progress in the current window. let t = |t| (t - t0.get()) / (t1.get() - t0.get()); let c_next = Color::mix_iter( [ WeightedColor::new(c0, 1.0 - t(t_next)), WeightedColor::new(c1, t(t_next)), ], conic.space, ) .unwrap(); add_single(&c_next, Ratio::new(t_next)); t_x = t_next; } add_single(&c1, t1); } } } stops } fn convert_dash(dash: &DashPattern) -> StrokeDash { StrokeDash { array: dash.array.iter().map(|e| e.to_f32()).collect(), offset: dash.phase.to_f32(), } } fn correct_transform(state: &State, relative: RelativeTo) -> Transform { // In krilla, if we have a shape with a transform and a complex paint, // then the paint will inherit the transform of the shape. match relative { // Because of the above, we don't need to apply an additional transform here. RelativeTo::Self_ => Transform::identity(), // Because of the above, we need to first reverse the transform that will be // applied from the shape, and then re-apply the transform that is used for // the next parent container. RelativeTo::Parent => state .transform() .invert() .unwrap() .pre_concat(state.container_transform()), } }