use std::ops::Range; use rustybuzz::{Feature, UnicodeBuffer}; use super::*; use crate::font::{FaceId, FontStore, FontVariant}; use crate::library::prelude::*; use crate::util::SliceExt; /// The result of shaping text. /// /// This type contains owned or borrowed shaped text runs, which can be /// measured, used to reshape substrings more quickly and converted into a /// frame. #[derive(Debug, Clone)] pub struct ShapedText<'a> { /// The text that was shaped. pub text: Cow<'a, str>, /// The text direction. pub dir: Dir, /// The text's style properties. pub styles: StyleChain<'a>, /// The size of the text's bounding box. pub size: Size, /// The baseline from the top of the frame. pub baseline: Length, /// The shaped glyphs. pub glyphs: Cow<'a, [ShapedGlyph]>, } /// A single glyph resulting from shaping. #[derive(Debug, Copy, Clone)] pub struct ShapedGlyph { /// The font face the glyph is contained in. pub face_id: FaceId, /// The glyph's index in the face. pub glyph_id: u16, /// The advance width of the glyph. pub x_advance: Em, /// The horizontal offset of the glyph. pub x_offset: Em, /// A value that is the same for all glyphs belong to one cluster. pub cluster: usize, /// Whether splitting the shaping result before this glyph would yield the /// same results as shaping the parts to both sides of `text_index` /// separately. pub safe_to_break: bool, /// The first char in this glyph's cluster. pub c: char, } impl ShapedGlyph { /// Whether the glyph is a justifiable space. pub fn is_space(&self) -> bool { self.c == ' ' } } /// A side you can go toward. enum Side { /// Go toward the west. Left, /// Go toward the east. Right, } impl<'a> ShapedText<'a> { /// Build the shaped text's frame. /// /// The `justification` defines how much extra advance width each /// [space glyph](ShapedGlyph::is_space) will get. pub fn build(&self, fonts: &FontStore, justification: Length) -> Frame { let mut offset = Length::zero(); let mut frame = Frame::new(self.size); frame.baseline = Some(self.baseline); for (face_id, group) in self.glyphs.as_ref().group_by_key(|g| g.face_id) { let pos = Point::new(offset, self.baseline); let size = self.styles.get(TextNode::SIZE).abs; let fill = self.styles.get(TextNode::FILL); let glyphs = group .iter() .map(|glyph| Glyph { id: glyph.glyph_id, x_advance: glyph.x_advance + if glyph.is_space() { frame.size.x += justification; Em::from_length(justification, size) } else { Em::zero() }, x_offset: glyph.x_offset, }) .collect(); let text = Text { face_id, size, fill, glyphs }; let text_layer = frame.layer(); let width = text.width(); // Apply line decorations. for deco in self.styles.get_cloned(TextNode::LINES) { decorate(&mut frame, &deco, fonts, &text, pos, width); } frame.insert(text_layer, pos, Element::Text(text)); offset += width; } // Apply link if it exists. if let Some(url) = self.styles.get_ref(TextNode::LINK) { frame.link(url); } frame } /// How many spaces the text contains. pub fn spaces(&self) -> usize { self.glyphs.iter().filter(|g| g.is_space()).count() } /// The width of the spaces in the text. pub fn stretch(&self) -> Length { self.glyphs .iter() .filter(|g| g.is_space()) .map(|g| g.x_advance) .sum::() .resolve(self.styles.get(TextNode::SIZE).abs) } /// Reshape a range of the shaped text, reusing information from this /// shaping process if possible. pub fn reshape( &'a self, fonts: &mut FontStore, text_range: Range, ) -> ShapedText<'a> { if let Some(glyphs) = self.slice_safe_to_break(text_range.clone()) { let (size, baseline) = measure(fonts, &glyphs, self.styles); Self { text: Cow::Borrowed(&self.text[text_range]), dir: self.dir, styles: self.styles, size, baseline, glyphs: Cow::Borrowed(glyphs), } } else { shape(fonts, &self.text[text_range], self.styles, self.dir) } } /// Push a hyphen to end of the text. pub fn push_hyphen(&mut self, fonts: &mut FontStore) { let size = self.styles.get(TextNode::SIZE).abs; let variant = variant(self.styles); families(self.styles).find_map(|family| { let face_id = fonts.select(family, variant)?; let face = fonts.get(face_id); let ttf = face.ttf(); let glyph_id = ttf.glyph_index('-')?; let x_advance = face.to_em(ttf.glyph_hor_advance(glyph_id)?); let cluster = self.glyphs.last().map(|g| g.cluster).unwrap_or_default(); self.size.x += x_advance.resolve(size); self.glyphs.to_mut().push(ShapedGlyph { face_id, glyph_id: glyph_id.0, x_advance, x_offset: Em::zero(), cluster, safe_to_break: true, c: '-', }); Some(()) }); } /// Find the subslice of glyphs that represent the given text range if both /// sides are safe to break. fn slice_safe_to_break(&self, text_range: Range) -> Option<&[ShapedGlyph]> { let Range { mut start, mut end } = text_range; if !self.dir.is_positive() { std::mem::swap(&mut start, &mut end); } let left = self.find_safe_to_break(start, Side::Left)?; let right = self.find_safe_to_break(end, Side::Right)?; Some(&self.glyphs[left .. right]) } /// Find the glyph offset matching the text index that is most towards the /// given side and safe-to-break. fn find_safe_to_break(&self, text_index: usize, towards: Side) -> Option { let ltr = self.dir.is_positive(); // Handle edge cases. let len = self.glyphs.len(); if text_index == 0 { return Some(if ltr { 0 } else { len }); } else if text_index == self.text.len() { return Some(if ltr { len } else { 0 }); } // Find any glyph with the text index. let mut idx = self .glyphs .binary_search_by(|g| { let ordering = g.cluster.cmp(&text_index); if ltr { ordering } else { ordering.reverse() } }) .ok()?; let next = match towards { Side::Left => usize::checked_sub, Side::Right => usize::checked_add, }; // Search for the outermost glyph with the text index. while let Some(next) = next(idx, 1) { if self.glyphs.get(next).map_or(true, |g| g.cluster != text_index) { break; } idx = next; } // RTL needs offset one because the left side of the range should be // exclusive and the right side inclusive, contrary to the normal // behaviour of ranges. if !ltr { idx += 1; } self.glyphs[idx].safe_to_break.then(|| idx) } } /// Shape text into [`ShapedText`]. pub fn shape<'a>( fonts: &mut FontStore, text: &'a str, styles: StyleChain<'a>, dir: Dir, ) -> ShapedText<'a> { let text = match styles.get(TextNode::CASE) { Some(case) => Cow::Owned(case.apply(text)), None => Cow::Borrowed(text), }; let mut glyphs = vec![]; if !text.is_empty() { shape_segment( fonts, &mut glyphs, 0, &text, variant(styles), families(styles), None, dir, &tags(styles), ); } track_and_space( &mut glyphs, styles.get(TextNode::TRACKING), styles.get(TextNode::SPACING), ); let (size, baseline) = measure(fonts, &glyphs, styles); ShapedText { text, dir, styles, size, baseline, glyphs: Cow::Owned(glyphs), } } /// Resolve the font variant with `STRONG` and `EMPH` factored in. fn variant(styles: StyleChain) -> FontVariant { let mut variant = FontVariant::new( styles.get(TextNode::STYLE), styles.get(TextNode::WEIGHT), styles.get(TextNode::STRETCH), ); if styles.get(TextNode::STRONG) { variant.weight = variant.weight.thicken(300); } if styles.get(TextNode::EMPH) { variant.style = match variant.style { FontStyle::Normal => FontStyle::Italic, FontStyle::Italic => FontStyle::Normal, FontStyle::Oblique => FontStyle::Normal, } } variant } /// Resolve a prioritized iterator over the font families. fn families(styles: StyleChain) -> impl Iterator + Clone { let head = if styles.get(TextNode::MONOSPACED) { styles.get_ref(TextNode::MONOSPACE).as_slice() } else { &[] }; let core = styles.get_ref(TextNode::FAMILY).iter().flat_map(move |family| { match family { FontFamily::Named(name) => std::slice::from_ref(name), FontFamily::Serif => styles.get_ref(TextNode::SERIF), FontFamily::SansSerif => styles.get_ref(TextNode::SANS_SERIF), FontFamily::Monospace => styles.get_ref(TextNode::MONOSPACE), } }); let tail: &[&str] = if styles.get(TextNode::FALLBACK) { &["ibm plex sans", "latin modern math", "twitter color emoji"] } else { &[] }; head.iter() .chain(core) .map(|named| named.as_str()) .chain(tail.iter().copied()) } /// Collect the tags of the OpenType features to apply. fn tags(styles: StyleChain) -> Vec { let mut tags = vec![]; let mut feat = |tag, value| { tags.push(Feature::new(Tag::from_bytes(tag), value, ..)); }; // Features that are on by default in Harfbuzz are only added if disabled. if !styles.get(TextNode::KERNING) { feat(b"kern", 0); } // Features that are off by default in Harfbuzz are only added if enabled. if styles.get(TextNode::SMALLCAPS) { feat(b"smcp", 1); } if styles.get(TextNode::ALTERNATES) { feat(b"salt", 1); } let storage; if let Some(set) = styles.get(TextNode::STYLISTIC_SET) { storage = [b's', b's', b'0' + set.get() / 10, b'0' + set.get() % 10]; feat(&storage, 1); } if !styles.get(TextNode::LIGATURES) { feat(b"liga", 0); feat(b"clig", 0); } if styles.get(TextNode::DISCRETIONARY_LIGATURES) { feat(b"dlig", 1); } if styles.get(TextNode::HISTORICAL_LIGATURES) { feat(b"hilg", 1); } match styles.get(TextNode::NUMBER_TYPE) { Smart::Auto => {} Smart::Custom(NumberType::Lining) => feat(b"lnum", 1), Smart::Custom(NumberType::OldStyle) => feat(b"onum", 1), } match styles.get(TextNode::NUMBER_WIDTH) { Smart::Auto => {} Smart::Custom(NumberWidth::Proportional) => feat(b"pnum", 1), Smart::Custom(NumberWidth::Tabular) => feat(b"tnum", 1), } match styles.get(TextNode::NUMBER_POSITION) { NumberPosition::Normal => {} NumberPosition::Subscript => feat(b"subs", 1), NumberPosition::Superscript => feat(b"sups", 1), } if styles.get(TextNode::SLASHED_ZERO) { feat(b"zero", 1); } if styles.get(TextNode::FRACTIONS) { feat(b"frac", 1); } for &(tag, value) in styles.get_ref(TextNode::FEATURES).iter() { tags.push(Feature::new(tag, value, ..)) } tags } /// Shape text with font fallback using the `families` iterator. fn shape_segment<'a>( fonts: &mut FontStore, glyphs: &mut Vec, base: usize, text: &str, variant: FontVariant, mut families: impl Iterator + Clone, mut first_face: Option, dir: Dir, tags: &[rustybuzz::Feature], ) { // No font has newlines. if text.chars().all(|c| c == '\n') { return; } // Select the font family. let (face_id, fallback) = loop { // Try to load the next available font family. match families.next() { Some(family) => { if let Some(id) = fonts.select(family, variant) { break (id, true); } } // We're out of families, so we don't do any more fallback and just // shape the tofus with the first face we originally used. None => match first_face { Some(id) => break (id, false), None => return, }, } }; // Remember the id if this the first available face since we use that one to // shape tofus. first_face.get_or_insert(face_id); // Fill the buffer with our text. let mut buffer = UnicodeBuffer::new(); buffer.push_str(text); buffer.set_direction(match dir { Dir::LTR => rustybuzz::Direction::LeftToRight, Dir::RTL => rustybuzz::Direction::RightToLeft, _ => unimplemented!(), }); // Shape! let mut face = fonts.get(face_id); let buffer = rustybuzz::shape(face.ttf(), tags, buffer); let infos = buffer.glyph_infos(); let pos = buffer.glyph_positions(); // Collect the shaped glyphs, doing fallback and shaping parts again with // the next font if necessary. let mut i = 0; while i < infos.len() { let info = &infos[i]; let cluster = info.cluster as usize; if info.glyph_id != 0 || !fallback { // Add the glyph to the shaped output. // TODO: Don't ignore y_advance and y_offset. glyphs.push(ShapedGlyph { face_id, glyph_id: info.glyph_id as u16, x_advance: face.to_em(pos[i].x_advance), x_offset: face.to_em(pos[i].x_offset), cluster: base + cluster, safe_to_break: !info.unsafe_to_break(), c: text[cluster ..].chars().next().unwrap(), }); } else { // Determine the source text range for the tofu sequence. let range = { // First, search for the end of the tofu sequence. let k = i; while infos.get(i + 1).map_or(false, |info| info.glyph_id == 0) { i += 1; } // Then, determine the start and end text index. // // Examples: // Everything is shown in visual order. Tofus are written as "_". // We want to find out that the tofus span the text `2..6`. // Note that the clusters are longer than 1 char. // // Left-to-right: // Text: h a l i h a l l o // Glyphs: A _ _ C E // Clusters: 0 2 4 6 8 // k=1 i=2 // // Right-to-left: // Text: O L L A H I L A H // Glyphs: E C _ _ A // Clusters: 8 6 4 2 0 // k=2 i=3 let ltr = dir.is_positive(); let first = if ltr { k } else { i }; let start = infos[first].cluster as usize; let last = if ltr { i.checked_add(1) } else { k.checked_sub(1) }; let end = last .and_then(|last| infos.get(last)) .map_or(text.len(), |info| info.cluster as usize); start .. end }; // Recursively shape the tofu sequence with the next family. shape_segment( fonts, glyphs, base + range.start, &text[range], variant, families.clone(), first_face, dir, tags, ); face = fonts.get(face_id); } i += 1; } } /// Apply tracking and spacing to a slice of shaped glyphs. fn track_and_space(glyphs: &mut [ShapedGlyph], tracking: Em, spacing: Relative) { if tracking.is_zero() && spacing.is_one() { return; } let mut glyphs = glyphs.iter_mut().peekable(); while let Some(glyph) = glyphs.next() { if glyph.is_space() { glyph.x_advance *= spacing.get(); } if glyphs.peek().map_or(false, |next| glyph.cluster != next.cluster) { glyph.x_advance += tracking; } } } /// Measure the size and baseline of a run of shaped glyphs with the given /// properties. fn measure( fonts: &mut FontStore, glyphs: &[ShapedGlyph], styles: StyleChain, ) -> (Size, Length) { let mut width = Length::zero(); let mut top = Length::zero(); let mut bottom = Length::zero(); let size = styles.get(TextNode::SIZE).abs; let top_edge = styles.get(TextNode::TOP_EDGE); let bottom_edge = styles.get(TextNode::BOTTOM_EDGE); // Expand top and bottom by reading the face's vertical metrics. let mut expand = |face: &Face| { top.set_max(face.vertical_metric(top_edge, size)); bottom.set_max(-face.vertical_metric(bottom_edge, size)); }; if glyphs.is_empty() { // When there are no glyphs, we just use the vertical metrics of the // first available font. let variant = variant(styles); for family in families(styles) { if let Some(face_id) = fonts.select(family, variant) { expand(fonts.get(face_id)); break; } } } else { for (face_id, group) in glyphs.group_by_key(|g| g.face_id) { let face = fonts.get(face_id); expand(face); for glyph in group { width += glyph.x_advance.resolve(size); } } } (Size::new(width, top + bottom), top) }