// test optical sized variants in sub/superscripts --- // Test transition from script to scriptscript. #[ #set text(size:20pt) $ e^(e^(e^(e))) $ ] A large number: $e^(e^(e^(e)))$. --- // Test prime/double prime via scriptsize #let prime = [ \u{2032} ] #let dprime = [ \u{2033} ] #let tprime = [ \u{2034} ] $ y^dprime-2y^prime + y = 0 $ $y^dprime-2y^prime + y = 0$ $ y^tprime_3 + g^(prime 2) $ --- // Test prime superscript on large symbol $ scripts(sum_(k in NN))^prime 1/k^2 $ $sum_(k in NN)^prime 1/k^2$ --- // Test script-script in a fraction. $ 1/(x^A) $ #[#set text(size:18pt); $1/(x^A)$] vs. #[#set text(size:14pt); $x^A$] --- // Test dedicated syntax for primes $a'$, $a'''_b$, $'$, $'''''''$ --- // Test spaces between $a' ' '$, $' ' '$, $a' '/b$ --- // Test complex prime combinations $a'_b^c$, $a_b'^c$, $a_b^c'$, $a_b'^c'^d'$ $(a'_b')^(c'_d')$, $a'/b'$, $a_b'/c_d'$ $∫'$, $∑'$, $ ∑'_S' $ --- // Test attaching primes only $a' = a^', a_', a_'''^''^'$ --- // Test primes always attaching as scripts $ x' $ $ x^' $ $ attach(x, t: ') $ $ <' $ $ attach(<, br: ') $ $ op(<, limits: #true)' $ $ limits(<)' $ --- // Test forcefully attaching primes as limits $ attach(<, t: ') $ $ <^' $ $ attach(<, b: ') $ $ <_' $ $ limits(x)^' $ $ attach(limits(x), t: ') $