Refactor layouting a bit

Notably:
- Handle aspect ratio in fixed node
- Inline constraint inflation into pad node
This commit is contained in:
Laurenz 2021-08-19 15:31:29 +02:00
parent fdab7158c9
commit a6f260ca39
21 changed files with 350 additions and 316 deletions

View File

@ -834,7 +834,6 @@ fn walk_item(ctx: &mut EvalContext, label: EcoString, body: Template) {
}; };
StackNode { StackNode {
dirs: Gen::new(state.dirs.main, state.dirs.cross), dirs: Gen::new(state.dirs.main, state.dirs.cross),
aspect: None,
children: vec![ children: vec![
StackChild::Any(label.into(), Gen::default()), StackChild::Any(label.into(), Gen::default()),
StackChild::Spacing((state.font.size / 2.0).into()), StackChild::Spacing((state.font.size / 2.0).into()),

View File

@ -425,7 +425,7 @@ impl StackBuilder {
children.extend(last.any()); children.extend(last.any());
children.push(par); children.push(par);
} }
StackNode { dirs, aspect: None, children } StackNode { dirs, children }
} }
} }

View File

@ -30,6 +30,14 @@ impl Size {
Self { width: value, height: value } Self { width: value, height: value }
} }
/// Limit width and height at that of another size.
pub fn cap(self, limit: Self) -> Self {
Self {
width: self.width.min(limit.width),
height: self.height.min(limit.height),
}
}
/// Whether the other size fits into this one (smaller width and height). /// Whether the other size fits into this one (smaller width and height).
pub fn fits(self, other: Self) -> bool { pub fn fits(self, other: Self) -> bool {
self.width.fits(other.width) && self.height.fits(other.height) self.width.fits(other.width) && self.height.fits(other.height)
@ -62,13 +70,6 @@ impl Size {
SpecAxis::Vertical => Gen::new(self.width, self.height), SpecAxis::Vertical => Gen::new(self.width, self.height),
} }
} }
/// Find the largest contained size that satisfies the given `aspect` ratio.
pub fn with_aspect(self, aspect: f64) -> Self {
let width = self.width.min(aspect * self.height);
let height = width / aspect;
Size::new(width, height)
}
} }
impl Get<SpecAxis> for Size { impl Get<SpecAxis> for Size {

View File

@ -26,9 +26,8 @@ impl Layout for BackgroundNode {
regions: &Regions, regions: &Regions,
) -> Vec<Constrained<Rc<Frame>>> { ) -> Vec<Constrained<Rc<Frame>>> {
let mut frames = self.child.layout(ctx, regions); let mut frames = self.child.layout(ctx, regions);
for frame in &mut frames {
let mut new = Frame::new(frame.size, frame.baseline);
for Constrained { item: frame, .. } in &mut frames {
let (point, geometry) = match self.shape { let (point, geometry) = match self.shape {
BackgroundShape::Rect => (Point::zero(), Geometry::Rect(frame.size)), BackgroundShape::Rect => (Point::zero(), Geometry::Rect(frame.size)),
BackgroundShape::Ellipse => { BackgroundShape::Ellipse => {
@ -36,11 +35,15 @@ impl Layout for BackgroundNode {
} }
}; };
let prev = std::mem::take(&mut frame.item); // Create a new frame with the background geometry and the child's
// frame.
let empty = Frame::new(frame.size, frame.baseline);
let prev = std::mem::replace(frame, Rc::new(empty));
let new = Rc::make_mut(frame);
new.push(point, Element::Geometry(geometry, self.fill)); new.push(point, Element::Geometry(geometry, self.fill));
new.push_frame(Point::zero(), prev); new.push_frame(Point::zero(), prev);
*Rc::make_mut(&mut frame.item) = new;
} }
frames frames
} }
} }

View File

@ -1,7 +1,5 @@
use std::ops::Deref; use std::ops::Deref;
use crate::util::OptionExt;
use super::*; use super::*;
/// Carries an item that is only valid in certain regions and the constraints /// Carries an item that is only valid in certain regions and the constraints
@ -61,36 +59,14 @@ impl Constraints {
&& base.eq_by(&self.base, |x, y| y.map_or(true, |y| x.approx_eq(y))) && base.eq_by(&self.base, |x, y| y.map_or(true, |y| x.approx_eq(y)))
} }
/// Set the appropriate base constraints for (relative) width and height /// Set the appropriate base constraints for linear width and height sizing.
/// metrics, respectively. pub fn set_base_if_linear(&mut self, base: Size, sizing: Spec<Option<Linear>>) {
pub fn set_base_using_linears(
&mut self,
size: Spec<Option<Linear>>,
regions: &Regions,
) {
// The full sizes need to be equal if there is a relative component in the sizes. // The full sizes need to be equal if there is a relative component in the sizes.
if size.horizontal.map_or(false, |l| l.is_relative()) { if sizing.horizontal.map_or(false, |l| l.is_relative()) {
self.base.horizontal = Some(regions.base.width); self.base.horizontal = Some(base.width);
} }
if size.vertical.map_or(false, |l| l.is_relative()) { if sizing.vertical.map_or(false, |l| l.is_relative()) {
self.base.vertical = Some(regions.base.height); self.base.vertical = Some(base.height);
} }
} }
/// Changes all constraints by adding the `size` to them if they are `Some`.
pub fn inflate(&mut self, size: Size, regions: &Regions) {
for spec in [&mut self.min, &mut self.max] {
if let Some(horizontal) = spec.horizontal.as_mut() {
*horizontal += size.width;
}
if let Some(vertical) = spec.vertical.as_mut() {
*vertical += size.height;
}
}
self.exact.horizontal.and_set(Some(regions.current.width));
self.exact.vertical.and_set(Some(regions.current.height));
self.base.horizontal.and_set(Some(regions.base.width));
self.base.vertical.and_set(Some(regions.base.height));
}
} }

View File

@ -1,3 +1,5 @@
use decorum::N64;
use super::*; use super::*;
/// A node that can fix its child's width and height. /// A node that can fix its child's width and height.
@ -8,6 +10,10 @@ pub struct FixedNode {
pub width: Option<Linear>, pub width: Option<Linear>,
/// The fixed height, if any. /// The fixed height, if any.
pub height: Option<Linear>, pub height: Option<Linear>,
/// The fixed aspect ratio between width and height.
///
/// The resulting frame will satisfy `width = aspect * height`.
pub aspect: Option<N64>,
/// The child node whose size to fix. /// The child node whose size to fix.
pub child: LayoutNode, pub child: LayoutNode,
} }
@ -16,32 +22,73 @@ impl Layout for FixedNode {
fn layout( fn layout(
&self, &self,
ctx: &mut LayoutContext, ctx: &mut LayoutContext,
regions: &Regions, &Regions { current, base, expand, .. }: &Regions,
) -> Vec<Constrained<Rc<Frame>>> { ) -> Vec<Constrained<Rc<Frame>>> {
let Regions { current, base, .. } = regions; // Fill in width or height if aspect ratio and the other is given.
let mut constraints = Constraints::new(regions.expand); let aspect = self.aspect.map(N64::into_inner);
constraints.set_base_using_linears(Spec::new(self.width, self.height), &regions); let width = self.width.or(self.height.zip(aspect).map(|(h, a)| a * h));
let height = self.height.or(self.width.zip(aspect).map(|(w, a)| w / a));
let size = Size::new( // Prepare constraints.
self.width.map_or(current.width, |w| w.resolve(base.width)), let mut constraints = Constraints::new(expand);
self.height.map_or(current.height, |h| h.resolve(base.height)), constraints.set_base_if_linear(base, Spec::new(width, height));
);
// If one dimension was not specified, the `current` size needs to remain static. // If the size for one axis isn't specified, the `current` size along
if self.width.is_none() { // that axis needs to remain the same for the result to be reusable.
if width.is_none() {
constraints.exact.horizontal = Some(current.width); constraints.exact.horizontal = Some(current.width);
} }
if self.height.is_none() {
if height.is_none() {
constraints.exact.vertical = Some(current.height); constraints.exact.vertical = Some(current.height);
} }
let expand = Spec::new(self.width.is_some(), self.height.is_some()); // Resolve the linears based on the current width and height.
let regions = Regions::one(size, expand); let mut size = Size::new(
width.map_or(current.width, |w| w.resolve(base.width)),
height.map_or(current.height, |h| h.resolve(base.height)),
);
// If width or height aren't set for an axis, the base should be
// inherited from the parent for that axis.
let base = Size::new(
width.map_or(base.width, |_| size.width),
height.map_or(base.height, |_| size.height),
);
// Handle the aspect ratio.
if let Some(aspect) = aspect {
constraints.exact = current.to_spec().map(Some);
constraints.min = Spec::splat(None);
constraints.max = Spec::splat(None);
let width = size.width.min(aspect * size.height);
size = Size::new(width, width / aspect);
}
// If width or height are fixed, the child should fill the available
// space along that axis.
let expand = Spec::new(width.is_some(), height.is_some());
// Layout the child.
let mut regions = Regions::one(size, base, expand);
let mut frames = self.child.layout(ctx, &regions); let mut frames = self.child.layout(ctx, &regions);
if let Some(frame) = frames.first_mut() { // If we have an aspect ratio and the child is content-sized, we need to
frame.constraints = constraints; // relayout with expansion.
if let Some(aspect) = aspect {
if width.is_none() && height.is_none() {
let needed = frames[0].size.cap(size);
let width = needed.width.max(aspect * needed.height);
regions.current = Size::new(width, width / aspect);
regions.expand = Spec::splat(true);
frames = self.child.layout(ctx, &regions);
} }
}
// Overwrite the child's constraints with ours.
frames[0].constraints = constraints;
assert_eq!(frames.len(), 1);
frames frames
} }

View File

@ -19,11 +19,13 @@ pub struct Frame {
children: Vec<(Point, Child)>, children: Vec<(Point, Child)>,
} }
/// A frame can contain multiple children: elements or other frames, complete /// A frame can contain two different kinds of children: a leaf element or a
/// with their children. /// nested frame.
#[derive(Debug, Clone, Eq, PartialEq, Serialize, Deserialize)] #[derive(Debug, Clone, Eq, PartialEq, Serialize, Deserialize)]
enum Child { enum Child {
/// A leaf node in the frame tree.
Element(Element), Element(Element),
/// An interior node.
Frame(Rc<Frame>), Frame(Rc<Frame>),
} }

View File

@ -263,7 +263,7 @@ impl<'a> GridLayouter<'a> {
let mut resolved = Length::zero(); let mut resolved = Length::zero();
for node in (0 .. self.rows.len()).filter_map(|y| self.cell(x, y)) { for node in (0 .. self.rows.len()).filter_map(|y| self.cell(x, y)) {
let size = Gen::new(available, Length::inf()).to_size(self.main); let size = Gen::new(available, Length::inf()).to_size(self.main);
let regions = Regions::one(size, Spec::splat(false)); let regions = Regions::one(size, size, Spec::splat(false));
let frame = node.layout(ctx, &regions).remove(0); let frame = node.layout(ctx, &regions).remove(0);
resolved.set_max(frame.size.get(self.cross)); resolved.set_max(frame.size.get(self.cross));
} }
@ -405,7 +405,7 @@ impl<'a> GridLayouter<'a> {
for (x, &rcol) in self.rcols.iter().enumerate() { for (x, &rcol) in self.rcols.iter().enumerate() {
if let Some(node) = self.cell(x, y) { if let Some(node) = self.cell(x, y) {
let size = Gen::new(rcol, length).to_size(self.main); let size = Gen::new(rcol, length).to_size(self.main);
let regions = Regions::one(size, Spec::splat(true)); let regions = Regions::one(size, size, Spec::splat(true));
let frame = node.layout(ctx, &regions).remove(0); let frame = node.layout(ctx, &regions).remove(0);
output.push_frame(pos.to_point(self.main), frame.item); output.push_frame(pos.to_point(self.main), frame.item);
} }
@ -432,7 +432,8 @@ impl<'a> GridLayouter<'a> {
.collect(); .collect();
// Prepare regions. // Prepare regions.
let mut regions = Regions::one(self.to_size(first), Spec::splat(true)); let size = self.to_size(first);
let mut regions = Regions::one(size, size, Spec::splat(true));
regions.backlog = rest.iter().rev().map(|&v| self.to_size(v)).collect(); regions.backlog = rest.iter().rev().map(|&v| self.to_size(v)).collect();
// Layout the row. // Layout the row.

View File

@ -19,11 +19,10 @@ impl Layout for ImageNode {
fn layout( fn layout(
&self, &self,
ctx: &mut LayoutContext, ctx: &mut LayoutContext,
regions: &Regions, &Regions { current, base, expand, .. }: &Regions,
) -> Vec<Constrained<Rc<Frame>>> { ) -> Vec<Constrained<Rc<Frame>>> {
let Regions { current, base, .. } = regions; let mut constraints = Constraints::new(expand);
let mut constraints = Constraints::new(regions.expand); constraints.set_base_if_linear(base, Spec::new(self.width, self.height));
constraints.set_base_using_linears(Spec::new(self.width, self.height), regions);
let width = self.width.map(|w| w.resolve(base.width)); let width = self.width.map(|w| w.resolve(base.width));
let height = self.height.map(|w| w.resolve(base.height)); let height = self.height.map(|w| w.resolve(base.height));

View File

@ -6,7 +6,6 @@ use itertools::Itertools;
use super::*; use super::*;
const CACHE_SIZE: usize = 20;
const TEMP_LEN: usize = 5; const TEMP_LEN: usize = 5;
const TEMP_LAST: usize = TEMP_LEN - 1; const TEMP_LAST: usize = TEMP_LEN - 1;
@ -23,22 +22,26 @@ pub struct LayoutCache {
/// In how many compilations this cache has been used. /// In how many compilations this cache has been used.
age: usize, age: usize,
/// What cache eviction policy should be used. /// What cache eviction policy should be used.
policy: EvictionStrategy, policy: EvictionPolicy,
/// The maximum number of entries this cache should have. Can be exceeded if
/// there are more must-keep entries.
max_size: usize,
} }
impl LayoutCache { impl LayoutCache {
/// Create a new, empty layout cache. /// Create a new, empty layout cache.
pub fn new(policy: EvictionStrategy) -> Self { pub fn new(policy: EvictionPolicy, max_size: usize) -> Self {
Self { Self {
frames: HashMap::default(), frames: HashMap::default(),
age: 0, age: 0,
policy, policy,
max_size,
} }
} }
/// Whether the cache is empty. /// Whether the cache is empty.
pub fn is_empty(&self) -> bool { pub fn is_empty(&self) -> bool {
self.len() == 0 self.frames.values().all(|entry| entry.is_empty())
} }
/// Amount of items in the cache. /// Amount of items in the cache.
@ -108,38 +111,34 @@ impl LayoutCache {
} }
let last = entry.temperature[TEMP_LAST]; let last = entry.temperature[TEMP_LAST];
for i in (1 .. TEMP_LEN).rev() { for i in (1 .. TEMP_LEN).rev() {
entry.temperature[i] = entry.temperature[i - 1]; entry.temperature[i] = entry.temperature[i - 1];
} }
entry.temperature[0] = 0; entry.temperature[0] = 0;
entry.temperature[TEMP_LAST] += last; entry.temperature[TEMP_LAST] += last;
entry.age += 1; entry.age += 1;
} }
self.evict(); self.evict();
self.frames.retain(|_, v| !v.is_empty()); self.frames.retain(|_, v| !v.is_empty());
} }
/// Evict the cache according to the policy.
fn evict(&mut self) { fn evict(&mut self) {
let len = self.len(); let len = self.len();
if len <= CACHE_SIZE { if len <= self.max_size {
return; return;
} }
match self.policy { match self.policy {
EvictionStrategy::LeastRecentlyUsed => { EvictionPolicy::LeastRecentlyUsed => {
// We find the element with the largest cooldown that cannot fit // We find the element with the largest cooldown that cannot fit
// anymore. // anymore.
let threshold = self let threshold = self
.frames .entries()
.values()
.flatten()
.map(|f| Reverse(f.cooldown())) .map(|f| Reverse(f.cooldown()))
.k_smallest(len - CACHE_SIZE) .k_smallest(len - self.max_size)
.last() .last()
.unwrap() .unwrap()
.0; .0;
@ -148,13 +147,11 @@ impl LayoutCache {
entries.retain(|e| e.cooldown() < threshold); entries.retain(|e| e.cooldown() < threshold);
} }
} }
EvictionStrategy::LeastFrequentlyUsed => { EvictionPolicy::LeastFrequentlyUsed => {
let threshold = self let threshold = self
.frames .entries()
.values()
.flatten()
.map(|f| N32::from(f.hits() as f32 / f.age() as f32)) .map(|f| N32::from(f.hits() as f32 / f.age() as f32))
.k_smallest(len - CACHE_SIZE) .k_smallest(len - self.max_size)
.last() .last()
.unwrap(); .unwrap();
@ -164,30 +161,23 @@ impl LayoutCache {
}); });
} }
} }
EvictionStrategy::Random => { EvictionPolicy::Random => {
// Fraction of items that should be kept. // Fraction of items that should be kept.
let threshold = CACHE_SIZE as f32 / len as f32; let threshold = self.max_size as f32 / len as f32;
for entries in self.frames.values_mut() { for entries in self.frames.values_mut() {
entries.retain(|_| rand::random::<f32>() > threshold); entries.retain(|_| rand::random::<f32>() > threshold);
} }
} }
EvictionStrategy::Patterns => { EvictionPolicy::Patterns => {
let kept = self let kept = self.entries().filter(|f| f.properties().must_keep()).count();
.frames
.values()
.flatten()
.filter(|f| f.properties().must_keep())
.count();
let remaining_capacity = CACHE_SIZE - kept.min(CACHE_SIZE); let remaining_capacity = self.max_size - kept.min(self.max_size);
if len - kept <= remaining_capacity { if len - kept <= remaining_capacity {
return; return;
} }
let threshold = self let threshold = self
.frames .entries()
.values()
.flatten()
.filter(|f| !f.properties().must_keep()) .filter(|f| !f.properties().must_keep())
.map(|f| N32::from(f.hits() as f32 / f.age() as f32)) .map(|f| N32::from(f.hits() as f32 / f.age() as f32))
.k_smallest((len - kept) - remaining_capacity) .k_smallest((len - kept) - remaining_capacity)
@ -201,7 +191,7 @@ impl LayoutCache {
}); });
} }
} }
EvictionStrategy::None => {} EvictionPolicy::None => {}
} }
} }
} }
@ -267,6 +257,11 @@ impl FramesEntry {
self.temperature[0] != 0 self.temperature[0] != 0
} }
/// Get the total amount of hits over the lifetime of this item.
pub fn hits(&self) -> usize {
self.temperature.iter().sum()
}
/// The amount of consecutive cycles in which this item has not been used. /// The amount of consecutive cycles in which this item has not been used.
pub fn cooldown(&self) -> usize { pub fn cooldown(&self) -> usize {
let mut cycle = 0; let mut cycle = 0;
@ -279,11 +274,7 @@ impl FramesEntry {
cycle cycle
} }
/// Get the total amount of hits over the lifetime of this item. /// Properties that describe how this entry's temperature evolved.
pub fn hits(&self) -> usize {
self.temperature.iter().sum()
}
pub fn properties(&self) -> PatternProperties { pub fn properties(&self) -> PatternProperties {
let mut all_zeros = true; let mut all_zeros = true;
let mut multi_use = false; let mut multi_use = false;
@ -332,15 +323,13 @@ impl FramesEntry {
all_zeros = false; all_zeros = false;
} }
decreasing = decreasing && !all_same;
PatternProperties { PatternProperties {
mature: self.age >= TEMP_LEN, mature: self.age >= TEMP_LEN,
hit: self.temperature[0] >= 1, hit: self.temperature[0] >= 1,
top_level: self.level == 0, top_level: self.level == 0,
all_zeros, all_zeros,
multi_use, multi_use,
decreasing, decreasing: decreasing && !all_same,
sparse, sparse,
abandoned, abandoned,
} }
@ -349,7 +338,7 @@ impl FramesEntry {
/// Cache eviction strategies. /// Cache eviction strategies.
#[derive(Debug, Copy, Clone, Eq, PartialEq)] #[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum EvictionStrategy { pub enum EvictionPolicy {
/// Evict the least recently used item. /// Evict the least recently used item.
LeastRecentlyUsed, LeastRecentlyUsed,
/// Evict the least frequently used item. /// Evict the least frequently used item.
@ -362,7 +351,7 @@ pub enum EvictionStrategy {
None, None,
} }
impl Default for EvictionStrategy { impl Default for EvictionPolicy {
fn default() -> Self { fn default() -> Self {
Self::Patterns Self::Patterns
} }
@ -415,23 +404,23 @@ impl PatternProperties {
mod tests { mod tests {
use super::*; use super::*;
fn empty_frame() -> Vec<Constrained<Rc<Frame>>> { fn empty_frames() -> Vec<Constrained<Rc<Frame>>> {
vec![Constrained { vec![Constrained {
item: Rc::new(Frame::default()), item: Rc::new(Frame::default()),
constraints: Constraints::new(Spec::splat(false)), constraints: Constraints::new(Spec::splat(false)),
}] }]
} }
fn zero_region() -> Regions { fn zero_regions() -> Regions {
Regions::one(Size::zero(), Spec::splat(false)) Regions::one(Size::zero(), Size::zero(), Spec::splat(false))
} }
#[test] #[test]
fn test_temperature() { fn test_incremental_temperature() {
let mut cache = LayoutCache::new(EvictionStrategy::None); let mut cache = LayoutCache::new(EvictionPolicy::None, 20);
let zero_region = zero_region(); let regions = zero_regions();
cache.policy = EvictionStrategy::None; cache.policy = EvictionPolicy::None;
cache.insert(0, empty_frame(), 0); cache.insert(0, empty_frames(), 0);
let entry = cache.frames.get(&0).unwrap().first().unwrap(); let entry = cache.frames.get(&0).unwrap().first().unwrap();
assert_eq!(entry.age(), 1); assert_eq!(entry.age(), 1);
@ -439,7 +428,7 @@ mod tests {
assert_eq!(entry.used_cycles, 0); assert_eq!(entry.used_cycles, 0);
assert_eq!(entry.level, 0); assert_eq!(entry.level, 0);
cache.get(0, &zero_region).unwrap(); cache.get(0, &regions).unwrap();
let entry = cache.frames.get(&0).unwrap().first().unwrap(); let entry = cache.frames.get(&0).unwrap().first().unwrap();
assert_eq!(entry.age(), 1); assert_eq!(entry.age(), 1);
assert_eq!(entry.temperature, [1, 0, 0, 0, 0]); assert_eq!(entry.temperature, [1, 0, 0, 0, 0]);
@ -450,7 +439,7 @@ mod tests {
assert_eq!(entry.temperature, [0, 1, 0, 0, 0]); assert_eq!(entry.temperature, [0, 1, 0, 0, 0]);
assert_eq!(entry.used_cycles, 1); assert_eq!(entry.used_cycles, 1);
cache.get(0, &zero_region).unwrap(); cache.get(0, &regions).unwrap();
for _ in 0 .. 4 { for _ in 0 .. 4 {
cache.turnaround(); cache.turnaround();
} }
@ -462,10 +451,10 @@ mod tests {
} }
#[test] #[test]
fn test_properties() { fn test_incremental_properties() {
let mut cache = LayoutCache::new(EvictionStrategy::None); let mut cache = LayoutCache::new(EvictionPolicy::None, 20);
cache.policy = EvictionStrategy::None; cache.policy = EvictionPolicy::None;
cache.insert(0, empty_frame(), 1); cache.insert(0, empty_frames(), 1);
let props = cache.frames.get(&0).unwrap().first().unwrap().properties(); let props = cache.frames.get(&0).unwrap().first().unwrap().properties();
assert_eq!(props.top_level, false); assert_eq!(props.top_level, false);

View File

@ -10,6 +10,7 @@ mod image;
mod incremental; mod incremental;
mod pad; mod pad;
mod par; mod par;
mod regions;
mod shaping; mod shaping;
mod stack; mod stack;
mod tree; mod tree;
@ -24,13 +25,11 @@ pub use grid::*;
pub use incremental::*; pub use incremental::*;
pub use pad::*; pub use pad::*;
pub use par::*; pub use par::*;
pub use regions::*;
pub use shaping::*; pub use shaping::*;
pub use stack::*; pub use stack::*;
pub use tree::*; pub use tree::*;
use std::hash::Hash;
#[cfg(feature = "layout-cache")]
use std::hash::Hasher;
use std::rc::Rc; use std::rc::Rc;
use crate::font::FontStore; use crate::font::FontStore;
@ -45,16 +44,6 @@ pub fn layout(ctx: &mut Context, tree: &LayoutTree) -> Vec<Rc<Frame>> {
tree.layout(&mut ctx) tree.layout(&mut ctx)
} }
/// Layout a node.
pub trait Layout {
/// Layout the node into the given regions.
fn layout(
&self,
ctx: &mut LayoutContext,
regions: &Regions,
) -> Vec<Constrained<Rc<Frame>>>;
}
/// The context for layouting. /// The context for layouting.
pub struct LayoutContext<'a> { pub struct LayoutContext<'a> {
/// Stores parsed font faces. /// Stores parsed font faces.
@ -83,94 +72,12 @@ impl<'a> LayoutContext<'a> {
} }
} }
/// A sequence of regions to layout into. /// Layout a node.
#[derive(Debug, Clone, Eq, PartialEq)] pub trait Layout {
pub struct Regions { /// Layout the node into the given regions.
/// The remaining size of the current region. fn layout(
pub current: Size, &self,
/// The base size for relative sizing. ctx: &mut LayoutContext,
pub base: Size, regions: &Regions,
/// A stack of followup regions. ) -> Vec<Constrained<Rc<Frame>>>;
///
/// Note that this is a stack and not a queue! The size of the next region is
/// `backlog.last()`.
pub backlog: Vec<Size>,
/// The final region that is repeated once the backlog is drained.
pub last: Option<Size>,
/// Whether nodes should expand to fill the regions instead of shrinking to
/// fit the content.
///
/// This property is only handled by nodes that have the ability to control
/// their own size.
pub expand: Spec<bool>,
}
impl Regions {
/// Create a new region sequence with exactly one region.
pub fn one(size: Size, expand: Spec<bool>) -> Self {
Self {
current: size,
base: size,
backlog: vec![],
last: None,
expand,
}
}
/// Create a new sequence of same-size regions that repeats indefinitely.
pub fn repeat(size: Size, expand: Spec<bool>) -> Self {
Self {
current: size,
base: size,
backlog: vec![],
last: Some(size),
expand,
}
}
/// Create new regions where all sizes are mapped with `f`.
pub fn map<F>(&self, mut f: F) -> Self
where
F: FnMut(Size) -> Size,
{
let mut regions = self.clone();
regions.mutate(|s| *s = f(*s));
regions
}
/// Whether `current` is a fully sized (untouched) copy of the last region.
///
/// If this is true, calling `next()` will have no effect.
pub fn in_full_last(&self) -> bool {
self.backlog.is_empty() && self.last.map_or(true, |size| self.current == size)
}
/// An iterator that returns pairs of `(current, base)` that are equivalent
/// to what would be produced by calling [`next()`](Self::next) repeatedly
/// until all regions are exhausted.
pub fn iter(&self) -> impl Iterator<Item = (Size, Size)> + '_ {
let first = std::iter::once((self.current, self.base));
let backlog = self.backlog.iter().rev();
let last = self.last.iter().cycle();
first.chain(backlog.chain(last).map(|&s| (s, s)))
}
/// Advance to the next region if there is any.
pub fn next(&mut self) {
if let Some(size) = self.backlog.pop().or(self.last) {
self.current = size;
self.base = size;
}
}
/// Mutate all contained sizes in place.
pub fn mutate<F>(&mut self, mut f: F)
where
F: FnMut(&mut Size),
{
f(&mut self.current);
f(&mut self.base);
self.last.as_mut().map(|x| f(x));
self.backlog.iter_mut().for_each(f);
}
} }

View File

@ -16,49 +16,62 @@ impl Layout for PadNode {
ctx: &mut LayoutContext, ctx: &mut LayoutContext,
regions: &Regions, regions: &Regions,
) -> Vec<Constrained<Rc<Frame>>> { ) -> Vec<Constrained<Rc<Frame>>> {
let mut regions = regions.clone();
let mut frames = self.child.layout( let mut frames = self.child.layout(
ctx, ctx,
&regions.map(|size| size - self.padding.resolve(size).size()), &regions.map(|size| size - self.padding.resolve(size).size()),
); );
for frame in &mut frames { for (Constrained { item: frame, constraints }, (current, base)) in
let padded = solve(self.padding, frame.size); frames.iter_mut().zip(regions.iter())
let padding = self.padding.resolve(padded); {
let origin = Point::new(padding.left, padding.top);
let mut new = Frame::new(padded, frame.baseline + origin.y);
let prev = std::mem::take(&mut frame.item);
new.push_frame(origin, prev);
frame.constraints.inflate(padding.size(), &regions);
if self.padding.left.is_relative() || self.padding.right.is_relative() {
frame.constraints.base.horizontal = Some(regions.base.width);
}
if self.padding.top.is_relative() || self.padding.bottom.is_relative() {
frame.constraints.base.vertical = Some(regions.base.height);
}
regions.next();
*Rc::make_mut(&mut frame.item) = new;
}
frames
}
}
/// Solve for the size `padded` that satisfies (approximately):
/// `padded - padding.resolve(padded).size() == size`
fn solve(padding: Sides<Linear>, size: Size) -> Size {
fn solve_axis(length: Length, padding: Linear) -> Length { fn solve_axis(length: Length, padding: Linear) -> Length {
(length + padding.abs) / (1.0 - padding.rel.get()) (length + padding.abs) / (1.0 - padding.rel.get())
} }
Size::new( // Solve for the size `padded` that satisfies (approximately):
solve_axis(size.width, padding.left + padding.right), // `padded - padding.resolve(padded).size() == size`
solve_axis(size.height, padding.top + padding.bottom), let padded = Size::new(
) solve_axis(frame.size.width, self.padding.left + self.padding.right),
solve_axis(frame.size.height, self.padding.top + self.padding.bottom),
);
let padding = self.padding.resolve(padded);
let origin = Point::new(padding.left, padding.top);
// Inflate min and max contraints by the padding.
for spec in [&mut constraints.min, &mut constraints.max] {
if let Some(horizontal) = spec.horizontal.as_mut() {
*horizontal += padding.size().width;
}
if let Some(vertical) = spec.vertical.as_mut() {
*vertical += padding.size().height;
}
}
// Set exact and base constraints if the child had them.
constraints.exact.horizontal.and_set(Some(current.width));
constraints.exact.vertical.and_set(Some(current.height));
constraints.base.horizontal.and_set(Some(base.width));
constraints.base.vertical.and_set(Some(base.height));
// Also set base constraints if the padding is relative.
if self.padding.left.is_relative() || self.padding.right.is_relative() {
constraints.base.horizontal = Some(base.width);
}
if self.padding.top.is_relative() || self.padding.bottom.is_relative() {
constraints.base.vertical = Some(base.height);
}
// Create a new larger frame and place the child's frame inside it.
let empty = Frame::new(padded, frame.baseline + origin.y);
let prev = std::mem::replace(frame, Rc::new(empty));
let new = Rc::make_mut(frame);
new.push_frame(origin, prev);
}
frames
}
} }
impl From<PadNode> for LayoutNode { impl From<PadNode> for LayoutNode {

93
src/layout/regions.rs Normal file
View File

@ -0,0 +1,93 @@
use crate::geom::{Size, Spec};
/// A sequence of regions to layout into.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct Regions {
/// The remaining size of the current region.
pub current: Size,
/// The base size for relative sizing.
pub base: Size,
/// A stack of followup regions.
///
/// Note that this is a stack and not a queue! The size of the next region is
/// `backlog.last()`.
pub backlog: Vec<Size>,
/// The final region that is repeated once the backlog is drained.
pub last: Option<Size>,
/// Whether nodes should expand to fill the regions instead of shrinking to
/// fit the content.
///
/// This property is only handled by nodes that have the ability to control
/// their own size.
pub expand: Spec<bool>,
}
impl Regions {
/// Create a new region sequence with exactly one region.
pub fn one(size: Size, base: Size, expand: Spec<bool>) -> Self {
Self {
current: size,
base,
backlog: vec![],
last: None,
expand,
}
}
/// Create a new sequence of same-size regions that repeats indefinitely.
pub fn repeat(size: Size, base: Size, expand: Spec<bool>) -> Self {
Self {
current: size,
base,
backlog: vec![],
last: Some(size),
expand,
}
}
/// Create new regions where all sizes are mapped with `f`.
pub fn map<F>(&self, mut f: F) -> Self
where
F: FnMut(Size) -> Size,
{
let mut regions = self.clone();
regions.mutate(|s| *s = f(*s));
regions
}
/// Whether `current` is a fully sized (untouched) copy of the last region.
///
/// If this is true, calling `next()` will have no effect.
pub fn in_full_last(&self) -> bool {
self.backlog.is_empty() && self.last.map_or(true, |size| self.current == size)
}
/// An iterator that returns pairs of `(current, base)` that are equivalent
/// to what would be produced by calling [`next()`](Self::next) repeatedly
/// until all regions are exhausted.
pub fn iter(&self) -> impl Iterator<Item = (Size, Size)> + '_ {
let first = std::iter::once((self.current, self.base));
let backlog = self.backlog.iter().rev();
let last = self.last.iter().cycle();
first.chain(backlog.chain(last).map(|&s| (s, s)))
}
/// Advance to the next region if there is any.
pub fn next(&mut self) {
if let Some(size) = self.backlog.pop().or(self.last) {
self.current = size;
self.base = size;
}
}
/// Mutate all contained sizes in place.
pub fn mutate<F>(&mut self, mut f: F)
where
F: FnMut(&mut Size),
{
f(&mut self.current);
f(&mut self.base);
self.last.as_mut().map(|x| f(x));
self.backlog.iter_mut().for_each(f);
}
}

View File

@ -1,5 +1,3 @@
use decorum::N64;
use super::*; use super::*;
/// A node that stacks its children. /// A node that stacks its children.
@ -11,10 +9,6 @@ pub struct StackNode {
/// The children are stacked along the `main` direction. The `cross` /// The children are stacked along the `main` direction. The `cross`
/// direction is required for aligning the children. /// direction is required for aligning the children.
pub dirs: Gen<Dir>, pub dirs: Gen<Dir>,
/// The fixed aspect ratio between width and height, if any.
///
/// The resulting frames will satisfy `width = aspect * height`.
pub aspect: Option<N64>,
/// The nodes to be stacked. /// The nodes to be stacked.
pub children: Vec<StackChild>, pub children: Vec<StackChild>,
} }
@ -83,10 +77,6 @@ impl<'a> StackLayouter<'a> {
// Disable expansion on the main axis for children. // Disable expansion on the main axis for children.
regions.expand.set(main, false); regions.expand.set(main, false);
if let Some(aspect) = stack.aspect {
regions.current = regions.current.with_aspect(aspect.into_inner());
}
Self { Self {
stack, stack,
main, main,
@ -161,6 +151,7 @@ impl<'a> StackLayouter<'a> {
.max .max
.get_mut(self.main) .get_mut(self.main)
.set_min(self.used.main + size.main); .set_min(self.used.main + size.main);
self.finish_region(); self.finish_region();
} }
@ -184,7 +175,7 @@ impl<'a> StackLayouter<'a> {
// Determine the stack's size dependening on whether the region is // Determine the stack's size dependening on whether the region is
// fixed. // fixed.
let mut size = Size::new( let size = Size::new(
if expand.horizontal { if expand.horizontal {
self.constraints.exact.horizontal = Some(self.full.width); self.constraints.exact.horizontal = Some(self.full.width);
self.full.width self.full.width
@ -201,20 +192,6 @@ impl<'a> StackLayouter<'a> {
}, },
); );
// Make sure the stack's size satisfies the aspect ratio.
if let Some(aspect) = self.stack.aspect {
self.constraints.exact = self.full.to_spec().map(Some);
self.constraints.min = Spec::splat(None);
self.constraints.max = Spec::splat(None);
let width = size
.width
.max(aspect.into_inner() * size.height)
.min(self.full.width)
.min(aspect.into_inner() * self.full.height);
size = Size::new(width, width / aspect.into_inner());
}
if self.overflowing { if self.overflowing {
self.constraints.min.vertical = None; self.constraints.min.vertical = None;
self.constraints.max.vertical = None; self.constraints.max.vertical = None;
@ -259,10 +236,6 @@ impl<'a> StackLayouter<'a> {
} }
self.regions.next(); self.regions.next();
if let Some(aspect) = self.stack.aspect {
self.regions.current = self.regions.current.with_aspect(aspect.into_inner());
}
self.full = self.regions.current; self.full = self.regions.current;
self.used = Gen::zero(); self.used = Gen::zero();
self.ruler = Align::Start; self.ruler = Align::Start;

View File

@ -3,6 +3,9 @@ use super::*;
use std::any::Any; use std::any::Any;
use std::fmt::{self, Debug, Formatter}; use std::fmt::{self, Debug, Formatter};
#[cfg(feature = "layout-cache")]
use std::hash::{Hash, Hasher};
#[cfg(feature = "layout-cache")] #[cfg(feature = "layout-cache")]
use fxhash::FxHasher64; use fxhash::FxHasher64;
@ -37,7 +40,7 @@ impl PageRun {
// that axis. // that axis.
let Size { width, height } = self.size; let Size { width, height } = self.size;
let expand = Spec::new(width.is_finite(), height.is_finite()); let expand = Spec::new(width.is_finite(), height.is_finite());
let regions = Regions::repeat(self.size, expand); let regions = Regions::repeat(self.size, self.size, expand);
self.child.layout(ctx, &regions).into_iter().map(|c| c.item).collect() self.child.layout(ctx, &regions).into_iter().map(|c| c.item).collect()
} }
} }

View File

@ -53,7 +53,7 @@ use crate::eval::{Module, Scope, State};
use crate::font::FontStore; use crate::font::FontStore;
use crate::image::ImageStore; use crate::image::ImageStore;
#[cfg(feature = "layout-cache")] #[cfg(feature = "layout-cache")]
use crate::layout::{EvictionStrategy, LayoutCache}; use crate::layout::{EvictionPolicy, LayoutCache};
use crate::layout::{Frame, LayoutTree}; use crate::layout::{Frame, LayoutTree};
use crate::loading::Loader; use crate::loading::Loader;
use crate::source::{SourceId, SourceStore}; use crate::source::{SourceId, SourceStore};
@ -137,12 +137,13 @@ impl Context {
/// A builder for a [`Context`]. /// A builder for a [`Context`].
/// ///
/// This struct is created by [`Context::builder`]. /// This struct is created by [`Context::builder`].
#[derive(Default)]
pub struct ContextBuilder { pub struct ContextBuilder {
std: Option<Scope>, std: Option<Scope>,
state: Option<State>, state: Option<State>,
#[cfg(feature = "layout-cache")] #[cfg(feature = "layout-cache")]
policy: Option<EvictionStrategy>, policy: EvictionPolicy,
#[cfg(feature = "layout-cache")]
max_size: usize,
} }
impl ContextBuilder { impl ContextBuilder {
@ -161,8 +162,18 @@ impl ContextBuilder {
/// The policy for eviction of the layout cache. /// The policy for eviction of the layout cache.
#[cfg(feature = "layout-cache")] #[cfg(feature = "layout-cache")]
pub fn policy(mut self, policy: EvictionStrategy) -> Self { pub fn cache_policy(mut self, policy: EvictionPolicy) -> Self {
self.policy = Some(policy); self.policy = policy;
self
}
/// The maximum number of entries the layout cache should have.
///
/// Note that this can be exceeded if more entries are categorized as [must
/// keep][crate::layout::PatternProperties::must_keep].
#[cfg(feature = "layout-cache")]
pub fn cache_max_size(mut self, max_size: usize) -> Self {
self.max_size = max_size;
self self
} }
@ -175,9 +186,22 @@ impl ContextBuilder {
images: ImageStore::new(Rc::clone(&loader)), images: ImageStore::new(Rc::clone(&loader)),
loader, loader,
#[cfg(feature = "layout-cache")] #[cfg(feature = "layout-cache")]
layouts: LayoutCache::new(self.policy.unwrap_or_default()), layouts: LayoutCache::new(self.policy, self.max_size),
std: self.std.unwrap_or(library::new()), std: self.std.unwrap_or(library::new()),
state: self.state.unwrap_or_default(), state: self.state.unwrap_or_default(),
} }
} }
} }
impl Default for ContextBuilder {
fn default() -> Self {
Self {
std: None,
state: None,
#[cfg(feature = "layout-cache")]
policy: EvictionPolicy::default(),
#[cfg(feature = "layout-cache")]
max_size: 2000,
}
}
}

View File

@ -64,18 +64,19 @@ fn rect_impl(
body: Template, body: Template,
) -> Value { ) -> Value {
Value::Template(Template::from_inline(move |state| { Value::Template(Template::from_inline(move |state| {
let mut stack = body.to_stack(state); let mut node = LayoutNode::new(FixedNode {
stack.aspect = aspect; width,
height,
let mut node = FixedNode { width, height, child: stack.into() }.into(); aspect,
child: body.to_stack(state).into(),
});
if let Some(fill) = fill { if let Some(fill) = fill {
node = BackgroundNode { node = LayoutNode::new(BackgroundNode {
shape: BackgroundShape::Rect, shape: BackgroundShape::Rect,
fill: Paint::Color(fill), fill: Paint::Color(fill),
child: node, child: node,
} });
.into();
} }
node node
@ -120,27 +121,22 @@ fn ellipse_impl(
// perfectly into the ellipse. // perfectly into the ellipse.
const PAD: f64 = 0.5 - SQRT_2 / 4.0; const PAD: f64 = 0.5 - SQRT_2 / 4.0;
let mut stack = body.to_stack(state); let mut node = LayoutNode::new(FixedNode {
stack.aspect = aspect;
let mut node = FixedNode {
width, width,
height, height,
child: PadNode { aspect,
child: LayoutNode::new(PadNode {
padding: Sides::splat(Relative::new(PAD).into()), padding: Sides::splat(Relative::new(PAD).into()),
child: stack.into(), child: body.to_stack(state).into(),
} }),
.into(), });
}
.into();
if let Some(fill) = fill { if let Some(fill) = fill {
node = BackgroundNode { node = LayoutNode::new(BackgroundNode {
shape: BackgroundShape::Ellipse, shape: BackgroundShape::Ellipse,
fill: Paint::Color(fill), fill: Paint::Color(fill),
child: node, child: node,
} });
.into();
} }
node node

View File

@ -145,8 +145,12 @@ pub fn boxed(_: &mut EvalContext, args: &mut Arguments) -> TypResult<Value> {
let height = args.named("height")?; let height = args.named("height")?;
let body: Template = args.eat().unwrap_or_default(); let body: Template = args.eat().unwrap_or_default();
Ok(Value::Template(Template::from_inline(move |state| { Ok(Value::Template(Template::from_inline(move |state| {
let child = body.to_stack(state).into(); FixedNode {
FixedNode { width, height, child } width,
height,
aspect: None,
child: body.to_stack(state).into(),
}
}))) })))
} }
@ -190,10 +194,7 @@ pub fn stack(_: &mut EvalContext, args: &mut Arguments) -> TypResult<Value> {
Ok(Value::Template(Template::from_block(move |state| { Ok(Value::Template(Template::from_block(move |state| {
let children = children let children = children
.iter() .iter()
.map(|child| { .map(|child| StackChild::Any(child.to_stack(state).into(), state.aligns))
let child = child.to_stack(state).into();
StackChild::Any(child, state.aligns)
})
.collect(); .collect();
let mut dirs = Gen::new(None, dir).unwrap_or(state.dirs); let mut dirs = Gen::new(None, dir).unwrap_or(state.dirs);
@ -204,7 +205,7 @@ pub fn stack(_: &mut EvalContext, args: &mut Arguments) -> TypResult<Value> {
dirs.cross = state.dirs.main; dirs.cross = state.dirs.main;
} }
StackNode { dirs, aspect: None, children } StackNode { dirs, children }
}))) })))
} }

View File

@ -21,6 +21,7 @@ use crate::diag::TypResult;
use crate::eval::{Arguments, EvalContext, Scope, Str, Template, Value}; use crate::eval::{Arguments, EvalContext, Scope, Str, Template, Value};
use crate::font::{FontFamily, FontStretch, FontStyle, FontWeight, VerticalFontMetric}; use crate::font::{FontFamily, FontStretch, FontStyle, FontWeight, VerticalFontMetric};
use crate::geom::*; use crate::geom::*;
use crate::layout::LayoutNode;
use crate::syntax::Spanned; use crate::syntax::Spanned;
/// Construct a scope containing all standard library definitions. /// Construct a scope containing all standard library definitions.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.9 KiB

After

Width:  |  Height:  |  Size: 6.1 KiB

View File

@ -1,12 +1,18 @@
// Test the `square` function. // Test the `square` function.
--- ---
Auto-sized square. \ // Test auto-sized square.
#square(fill: eastern)[ #square(fill: eastern)[
#font(fill: white, weight: bold) #font(fill: white, weight: bold)
#align(center) #align(center)
#pad(5pt)[Typst] #pad(5pt)[Typst]
] ]
---
// Test relative-sized child.
#square(fill: eastern)[
#rect(width: 10pt, height: 5pt, fill: conifer) \
#rect(width: 40%, height: 5pt, fill: conifer)
]
--- ---
// Test height overflow. // Test height overflow.