Refactor stack ♻

This commit is contained in:
Laurenz 2020-10-10 12:40:11 +02:00
parent 13230db68c
commit 42500d5ed8
3 changed files with 420 additions and 279 deletions

View File

@ -268,3 +268,262 @@ impl LineRun {
}
}
}
/// Performs the stack layouting.
pub(super) struct StackLayouter {
/// The context used for stack layouting.
pub ctx: StackContext,
/// The finished layouts.
pub layouts: Vec<BoxLayout>,
/// The in-progress space.
pub space: Space,
}
/// The context for stack layouting.
#[derive(Debug, Clone)]
pub(super) struct StackContext {
/// The layouting directions.
pub dirs: Gen2<Dir>,
/// The spaces to layout into.
pub spaces: Vec<LayoutSpace>,
/// Whether to spill over into copies of the last space or finish layouting
/// when the last space is used up.
pub repeat: bool,
/// Whether to expand the size of the resulting layout to the full size of
/// this space or to shrink it to fit the content.
pub expand: Spec2<bool>,
}
impl StackLayouter {
/// Create a new stack layouter.
pub fn new(ctx: StackContext) -> Self {
let space = ctx.spaces[0];
Self {
ctx,
layouts: vec![],
space: Space::new(0, true, space.size),
}
}
/// Add a layout to the stack.
pub fn push_box(&mut self, layout: BoxLayout, aligns: Gen2<GenAlign>) {
// If the alignment cannot be fitted in this space, finish it.
//
// TODO: Issue warning for non-fitting alignment in non-repeating
// context.
if aligns.main < self.space.allowed_align && self.ctx.repeat {
self.finish_space(true);
}
// TODO: Issue warning about overflow if there is overflow in a
// non-repeating context.
if !self.space.usable.fits(layout.size) && self.ctx.repeat {
self.skip_to_fitting_space(layout.size);
}
// Change the usable space and size of the space.
self.update_metrics(layout.size.switch(self.ctx.dirs));
// Add the box to the vector and remember that spacings are allowed
// again.
self.space.layouts.push((layout, aligns));
self.space.allowed_align = aligns.main;
}
/// Add spacing to the stack.
pub fn push_spacing(&mut self, mut spacing: f64) {
// Reduce the spacing such that it definitely fits.
let axis = self.ctx.dirs.main.axis();
spacing = spacing.min(self.space.usable.get(axis));
let size = Gen2::new(spacing, 0.0);
self.update_metrics(size);
self.space.layouts.push((
BoxLayout::new(size.switch(self.ctx.dirs).to_size()),
Gen2::default(),
));
}
fn update_metrics(&mut self, added: Gen2<f64>) {
let mut used = self.space.used.switch(self.ctx.dirs);
used.cross = used.cross.max(added.cross);
used.main += added.main;
self.space.used = used.switch(self.ctx.dirs).to_size();
*self.space.usable.get_mut(self.ctx.dirs.main.axis()) -= added.main;
}
/// Move to the first space that can fit the given size or do nothing
/// if no space is capable of that.
pub fn skip_to_fitting_space(&mut self, size: Size) {
let start = self.next_space();
for (index, space) in self.ctx.spaces[start ..].iter().enumerate() {
if space.size.fits(size) {
self.finish_space(true);
self.start_space(start + index, true);
break;
}
}
}
/// The remaining inner spaces. If something is laid out into these spaces,
/// it will fit into this stack.
pub fn remaining(&self) -> Vec<LayoutSpace> {
let mut spaces = vec![LayoutSpace {
base: self.space.size,
size: self.space.usable,
}];
spaces.extend(&self.ctx.spaces[self.next_space() ..]);
spaces
}
/// The remaining usable size.
pub fn usable(&self) -> Size {
self.space.usable
}
/// Whether the current layout space is empty.
pub fn space_is_empty(&self) -> bool {
self.space.used == Size::ZERO && self.space.layouts.is_empty()
}
/// Finish everything up and return the final collection of boxes.
pub fn finish(mut self) -> Vec<BoxLayout> {
if self.space.hard || !self.space_is_empty() {
self.finish_space(false);
}
self.layouts
}
/// Finish active current space and start a new one.
pub fn finish_space(&mut self, hard: bool) {
let dirs = self.ctx.dirs;
// ------------------------------------------------------------------ //
// Step 1: Determine the full size of the space.
// (Mostly done already while collecting the boxes, but here we
// expand if necessary.)
let space = self.ctx.spaces[self.space.index];
let layout_size = {
let mut used_size = self.space.used;
if self.ctx.expand.horizontal {
used_size.width = space.size.width;
}
if self.ctx.expand.vertical {
used_size.height = space.size.height;
}
used_size
};
let mut layout = BoxLayout::new(layout_size);
// ------------------------------------------------------------------ //
// Step 2: Forward pass. Create a bounding box for each layout in which
// it will be aligned. Then, go forwards through the boxes and remove
// what is taken by previous layouts from the following layouts.
let mut bounds = vec![];
let mut bound = Rect {
x0: 0.0,
y0: 0.0,
x1: layout_size.width,
y1: layout_size.height,
};
for (layout, _) in &self.space.layouts {
// First, store the bounds calculated so far (which were reduced
// by the predecessors of this layout) as the initial bounding box
// of this layout.
bounds.push(bound);
// Then, reduce the bounding box for the following layouts. This
// layout uses up space from the origin to the end. Thus, it reduces
// the usable space for following layouts at its origin by its
// main-axis extent.
*bound.get_mut(dirs.main.start()) +=
dirs.main.factor() * layout.size.get(dirs.main.axis());
}
// ------------------------------------------------------------------ //
// Step 3: Backward pass. Reduce the bounding boxes from the previous
// layouts by what is taken by the following ones.
let mut main_extent = 0.0;
for (child, bound) in self.space.layouts.iter().zip(&mut bounds).rev() {
let (layout, _) = child;
// Reduce the bounding box of this layout by the following one's
// main-axis extents.
*bound.get_mut(dirs.main.end()) -= dirs.main.factor() * main_extent;
// And then, include this layout's main-axis extent.
main_extent += layout.size.get(dirs.main.axis());
}
// ------------------------------------------------------------------ //
// Step 4: Align each layout in its bounding box and collect everything
// into a single finished layout.
let children = std::mem::take(&mut self.space.layouts);
for ((child, aligns), bound) in children.into_iter().zip(bounds) {
// Align the child in its own bounds.
let local =
bound.size().anchor(dirs, aligns) - child.size.anchor(dirs, aligns);
// Make the local position in the bounds global.
let pos = bound.origin() + local;
layout.push_layout(pos, child);
}
self.layouts.push(layout);
// ------------------------------------------------------------------ //
// Step 5: Start the next space.
self.start_space(self.next_space(), hard)
}
fn start_space(&mut self, index: usize, hard: bool) {
let space = self.ctx.spaces[index];
self.space = Space::new(index, hard, space.size);
}
fn next_space(&self) -> usize {
(self.space.index + 1).min(self.ctx.spaces.len() - 1)
}
}
/// A layout space composed of subspaces which can have different directions and
/// alignments.
#[derive(Debug)]
pub(super) struct Space {
/// The index of this space in `ctx.spaces`.
index: usize,
/// Whether to include a layout for this space even if it would be empty.
hard: bool,
/// The so-far accumulated layouts.
layouts: Vec<(BoxLayout, Gen2<GenAlign>)>,
/// The full size of this space.
size: Size,
/// The used size of this space.
used: Size,
/// The remaining space.
usable: Size,
/// Which alignments for new boxes are still allowed.
pub(super) allowed_align: GenAlign,
}
impl Space {
fn new(index: usize, hard: bool, size: Size) -> Self {
Self {
index,
hard,
layouts: vec![],
size,
used: Size::ZERO,
usable: size,
allowed_align: GenAlign::Start,
}
}
}

View File

@ -37,34 +37,165 @@ impl Layout for Stack {
ctx: &mut LayoutContext,
constraints: LayoutConstraints,
) -> Vec<LayoutItem> {
let mut layouter = StackLayouter::new(StackContext {
dirs: self.dirs,
spaces: constraints.spaces,
repeat: constraints.repeat,
expand: self.expand,
});
let mut items = vec![];
let size = constraints.spaces[0].size;
let mut space = StackSpace::new(self.dirs, self.expand, size);
let mut i = 0;
for child in &self.children {
let items = child
.layout(ctx, LayoutConstraints {
spaces: layouter.remaining(),
repeat: constraints.repeat,
})
.await;
let child_constraints = LayoutConstraints {
spaces: {
let mut remaining = vec![LayoutSpace {
base: space.full_size,
size: space.usable,
}];
let next = (i + 1).min(constraints.spaces.len() - 1);
remaining.extend(&constraints.spaces[next ..]);
remaining
},
repeat: constraints.repeat,
};
for item in items {
for item in child.layout(ctx, child_constraints).await {
match item {
LayoutItem::Spacing(amount) => layouter.push_spacing(amount),
LayoutItem::Box(boxed, aligns) => layouter.push_box(boxed, aligns),
LayoutItem::Spacing(spacing) => space.push_spacing(spacing),
LayoutItem::Box(mut boxed, aligns) => {
let mut last = false;
while let Err(back) = space.push_box(boxed, aligns) {
boxed = back;
if last {
break;
}
items.push(LayoutItem::Box(space.finish(), self.aligns));
if i + 1 < constraints.spaces.len() {
i += 1;
} else {
last = true;
}
let size = constraints.spaces[i].size;
space = StackSpace::new(self.dirs, self.expand, size);
}
}
}
}
}
layouter
.finish()
.into_iter()
.map(|boxed| LayoutItem::Box(boxed, self.aligns))
.collect()
items.push(LayoutItem::Box(space.finish(), self.aligns));
items
}
}
struct StackSpace {
dirs: Gen2<Dir>,
expand: Spec2<bool>,
boxes: Vec<(BoxLayout, Gen2<GenAlign>)>,
full_size: Size,
usable: Size,
used: Size,
ruler: GenAlign,
}
impl StackSpace {
fn new(dirs: Gen2<Dir>, expand: Spec2<bool>, size: Size) -> Self {
Self {
dirs,
expand,
boxes: vec![],
full_size: size,
usable: size,
used: Size::ZERO,
ruler: GenAlign::Start,
}
}
fn push_box(
&mut self,
boxed: BoxLayout,
aligns: Gen2<GenAlign>,
) -> Result<(), BoxLayout> {
let main = self.dirs.main.axis();
let cross = self.dirs.cross.axis();
if aligns.main < self.ruler || !self.usable.fits(boxed.size) {
return Err(boxed);
}
let size = boxed.size.switch(self.dirs);
*self.used.get_mut(cross) = self.used.get(cross).max(size.cross);
*self.used.get_mut(main) += size.main;
*self.usable.get_mut(main) -= size.main;
self.boxes.push((boxed, aligns));
self.ruler = aligns.main;
Ok(())
}
fn push_spacing(&mut self, spacing: f64) {
let main = self.dirs.main.axis();
let max = self.usable.get(main);
let trimmed = spacing.min(max);
*self.used.get_mut(main) += trimmed;
*self.usable.get_mut(main) -= trimmed;
let size = Gen2::new(trimmed, 0.0).switch(self.dirs);
self.boxes.push((BoxLayout::new(size.to_size()), Gen2::default()));
}
fn finish(mut self) -> BoxLayout {
let dirs = self.dirs;
let main = dirs.main.axis();
if self.expand.horizontal {
self.used.width = self.full_size.width;
}
if self.expand.vertical {
self.used.height = self.full_size.height;
}
let mut sum = 0.0;
let mut sums = Vec::with_capacity(self.boxes.len() + 1);
for (boxed, _) in &self.boxes {
sums.push(sum);
sum += boxed.size.get(main);
}
sums.push(sum);
let mut layout = BoxLayout::new(self.used);
let used = self.used.switch(dirs);
for (i, (boxed, aligns)) in self.boxes.into_iter().enumerate() {
let size = boxed.size.switch(dirs);
let before = sums[i];
let after = sum - sums[i + 1];
let main_len = used.main - size.main;
let main_range = if dirs.main.is_positive() {
before .. main_len - after
} else {
main_len - before .. after
};
let cross_len = used.cross - size.cross;
let cross_range = if dirs.cross.is_positive() {
0.0 .. cross_len
} else {
cross_len .. 0.0
};
let main = aligns.main.apply(main_range);
let cross = aligns.cross.apply(cross_range);
let pos = Gen2::new(main, cross).switch(dirs).to_point();
layout.push_layout(pos, boxed);
}
layout
}
}
@ -73,262 +204,3 @@ impl From<Stack> for LayoutNode {
Self::dynamic(stack)
}
}
/// Performs the stack layouting.
pub(super) struct StackLayouter {
/// The context used for stack layouting.
pub ctx: StackContext,
/// The finished layouts.
pub layouts: Vec<BoxLayout>,
/// The in-progress space.
pub space: Space,
}
/// The context for stack layouting.
#[derive(Debug, Clone)]
pub(super) struct StackContext {
/// The layouting directions.
pub dirs: Gen2<Dir>,
/// The spaces to layout into.
pub spaces: Vec<LayoutSpace>,
/// Whether to spill over into copies of the last space or finish layouting
/// when the last space is used up.
pub repeat: bool,
/// Whether to expand the size of the resulting layout to the full size of
/// this space or to shrink it to fit the content.
pub expand: Spec2<bool>,
}
impl StackLayouter {
/// Create a new stack layouter.
pub fn new(ctx: StackContext) -> Self {
let space = ctx.spaces[0];
Self {
ctx,
layouts: vec![],
space: Space::new(0, true, space.size),
}
}
/// Add a layout to the stack.
pub fn push_box(&mut self, layout: BoxLayout, aligns: Gen2<GenAlign>) {
// If the alignment cannot be fitted in this space, finish it.
//
// TODO: Issue warning for non-fitting alignment in non-repeating
// context.
if aligns.main < self.space.allowed_align && self.ctx.repeat {
self.finish_space(true);
}
// TODO: Issue warning about overflow if there is overflow in a
// non-repeating context.
if !self.space.usable.fits(layout.size) && self.ctx.repeat {
self.skip_to_fitting_space(layout.size);
}
// Change the usable space and size of the space.
self.update_metrics(layout.size.switch(self.ctx.dirs));
// Add the box to the vector and remember that spacings are allowed
// again.
self.space.layouts.push((layout, aligns));
self.space.allowed_align = aligns.main;
}
/// Add spacing to the stack.
pub fn push_spacing(&mut self, mut spacing: f64) {
// Reduce the spacing such that it definitely fits.
let axis = self.ctx.dirs.main.axis();
spacing = spacing.min(self.space.usable.get(axis));
let size = Gen2::new(spacing, 0.0);
self.update_metrics(size);
self.space.layouts.push((
BoxLayout::new(size.switch(self.ctx.dirs).to_size()),
Gen2::default(),
));
}
fn update_metrics(&mut self, added: Gen2<f64>) {
let mut used = self.space.used.switch(self.ctx.dirs);
used.cross = used.cross.max(added.cross);
used.main += added.main;
self.space.used = used.switch(self.ctx.dirs).to_size();
*self.space.usable.get_mut(self.ctx.dirs.main.axis()) -= added.main;
}
/// Move to the first space that can fit the given size or do nothing
/// if no space is capable of that.
pub fn skip_to_fitting_space(&mut self, size: Size) {
let start = self.next_space();
for (index, space) in self.ctx.spaces[start ..].iter().enumerate() {
if space.size.fits(size) {
self.finish_space(true);
self.start_space(start + index, true);
break;
}
}
}
/// The remaining inner spaces. If something is laid out into these spaces,
/// it will fit into this stack.
pub fn remaining(&self) -> Vec<LayoutSpace> {
let mut spaces = vec![LayoutSpace {
base: self.space.size,
size: self.space.usable,
}];
spaces.extend(&self.ctx.spaces[self.next_space() ..]);
spaces
}
/// The remaining usable size.
pub fn usable(&self) -> Size {
self.space.usable
}
/// Whether the current layout space is empty.
pub fn space_is_empty(&self) -> bool {
self.space.used == Size::ZERO && self.space.layouts.is_empty()
}
/// Finish everything up and return the final collection of boxes.
pub fn finish(mut self) -> Vec<BoxLayout> {
if self.space.hard || !self.space_is_empty() {
self.finish_space(false);
}
self.layouts
}
/// Finish active current space and start a new one.
pub fn finish_space(&mut self, hard: bool) {
let dirs = self.ctx.dirs;
// ------------------------------------------------------------------ //
// Step 1: Determine the full size of the space.
// (Mostly done already while collecting the boxes, but here we
// expand if necessary.)
let space = self.ctx.spaces[self.space.index];
let layout_size = {
let mut used_size = self.space.used;
if self.ctx.expand.horizontal {
used_size.width = space.size.width;
}
if self.ctx.expand.vertical {
used_size.height = space.size.height;
}
used_size
};
let mut layout = BoxLayout::new(layout_size);
// ------------------------------------------------------------------ //
// Step 2: Forward pass. Create a bounding box for each layout in which
// it will be aligned. Then, go forwards through the boxes and remove
// what is taken by previous layouts from the following layouts.
let mut bounds = vec![];
let mut bound = Rect {
x0: 0.0,
y0: 0.0,
x1: layout_size.width,
y1: layout_size.height,
};
for (layout, _) in &self.space.layouts {
// First, store the bounds calculated so far (which were reduced
// by the predecessors of this layout) as the initial bounding box
// of this layout.
bounds.push(bound);
// Then, reduce the bounding box for the following layouts. This
// layout uses up space from the origin to the end. Thus, it reduces
// the usable space for following layouts at its origin by its
// main-axis extent.
*bound.get_mut(dirs.main.start()) +=
dirs.main.factor() * layout.size.get(dirs.main.axis());
}
// ------------------------------------------------------------------ //
// Step 3: Backward pass. Reduce the bounding boxes from the previous
// layouts by what is taken by the following ones.
let mut main_extent = 0.0;
for (child, bound) in self.space.layouts.iter().zip(&mut bounds).rev() {
let (layout, _) = child;
// Reduce the bounding box of this layout by the following one's
// main-axis extents.
*bound.get_mut(dirs.main.end()) -= dirs.main.factor() * main_extent;
// And then, include this layout's main-axis extent.
main_extent += layout.size.get(dirs.main.axis());
}
// ------------------------------------------------------------------ //
// Step 4: Align each layout in its bounding box and collect everything
// into a single finished layout.
let children = std::mem::take(&mut self.space.layouts);
for ((child, aligns), bound) in children.into_iter().zip(bounds) {
// Align the child in its own bounds.
let local =
bound.size().anchor(dirs, aligns) - child.size.anchor(dirs, aligns);
// Make the local position in the bounds global.
let pos = bound.origin() + local;
layout.push_layout(pos, child);
}
self.layouts.push(layout);
// ------------------------------------------------------------------ //
// Step 5: Start the next space.
self.start_space(self.next_space(), hard)
}
fn start_space(&mut self, index: usize, hard: bool) {
let space = self.ctx.spaces[index];
self.space = Space::new(index, hard, space.size);
}
fn next_space(&self) -> usize {
(self.space.index + 1).min(self.ctx.spaces.len() - 1)
}
}
/// A layout space composed of subspaces which can have different directions and
/// alignments.
#[derive(Debug)]
pub(super) struct Space {
/// The index of this space in `ctx.spaces`.
index: usize,
/// Whether to include a layout for this space even if it would be empty.
hard: bool,
/// The so-far accumulated layouts.
layouts: Vec<(BoxLayout, Gen2<GenAlign>)>,
/// The full size of this space.
size: Size,
/// The used size of this space.
used: Size,
/// The remaining space.
usable: Size,
/// Which alignments for new boxes are still allowed.
pub(super) allowed_align: GenAlign,
}
impl Space {
fn new(index: usize, hard: bool, size: Size) -> Self {
Self {
index,
hard,
layouts: vec![],
size,
used: Size::ZERO,
usable: size,
allowed_align: GenAlign::Start,
}
}
}

View File

@ -1,6 +1,7 @@
//! Layouting primitives.
use std::fmt::{self, Display, Formatter};
use std::ops::Range;
use crate::geom::{Insets, Linear, Point, Size, Vec2};
@ -314,6 +315,15 @@ pub enum GenAlign {
}
impl GenAlign {
/// Returns the position of this alignment in the given length.
pub fn apply(self, range: Range<f64>) -> f64 {
match self {
Self::Start => range.start,
Self::Center => (range.start + range.end) / 2.0,
Self::End => range.end,
}
}
/// The inverse alignment.
pub fn inv(self) -> Self {
match self {