Refactor and comment ♻

This commit is contained in:
Laurenz 2021-04-07 01:01:30 +02:00
parent 076e767b0e
commit 3d2ee54848
4 changed files with 373 additions and 322 deletions

View File

@ -97,6 +97,7 @@ pub struct ParState {
/// The spacing between lines (dependent on scaled font size). /// The spacing between lines (dependent on scaled font size).
pub leading: Linear, pub leading: Linear,
/// The spacing between words (dependent on scaled font size). /// The spacing between words (dependent on scaled font size).
// TODO: Don't ignore this.
pub word_spacing: Linear, pub word_spacing: Linear,
} }

View File

@ -6,7 +6,7 @@ use xi_unicode::LineBreakIterator;
use super::*; use super::*;
use crate::exec::FontProps; use crate::exec::FontProps;
use crate::util::RangeExt; use crate::util::{RangeExt, SliceExt};
type Range = std::ops::Range<usize>; type Range = std::ops::Range<usize>;
@ -35,14 +35,14 @@ pub enum ParChild {
impl Layout for ParNode { impl Layout for ParNode {
fn layout(&self, ctx: &mut LayoutContext, areas: &Areas) -> Vec<Frame> { fn layout(&self, ctx: &mut LayoutContext, areas: &Areas) -> Vec<Frame> {
// Collect all text into one string used for BiDi analysis. // Collect all text into one string used for BiDi analysis.
let (text, ranges) = self.collect_text(); let text = self.collect_text();
// Find out the BiDi embedding levels. // Find out the BiDi embedding levels.
let bidi = BidiInfo::new(&text, Level::from_dir(self.dir)); let bidi = BidiInfo::new(&text, Level::from_dir(self.dir));
// Build a representation of the paragraph on which we can do // Build a representation of the paragraph on which we can do
// linebreaking without layouting each and every line from scratch. // linebreaking without layouting each and every line from scratch.
let layout = ParLayout::new(ctx, areas, self, bidi, ranges); let layout = ParLayout::new(ctx, areas, self, bidi);
// Find suitable linebreaks. // Find suitable linebreaks.
layout.build(ctx, areas.clone(), self) layout.build(ctx, areas.clone(), self)
@ -54,21 +54,49 @@ impl ParNode {
/// with a space character and other non-text nodes with the object /// with a space character and other non-text nodes with the object
/// replacement character. Returns the full text alongside the range each /// replacement character. Returns the full text alongside the range each
/// child spans in the text. /// child spans in the text.
fn collect_text(&self) -> (String, Vec<Range>) { fn collect_text(&self) -> String {
let mut text = String::new(); let mut text = String::new();
let mut ranges = vec![]; for string in self.strings() {
text.push_str(string);
for child in &self.children {
let start = text.len();
match *child {
ParChild::Spacing(_) => text.push(' '),
ParChild::Text(ref piece, _, _) => text.push_str(piece),
ParChild::Any(_, _) => text.push('\u{FFFC}'),
} }
ranges.push(start .. text.len()); text
} }
(text, ranges) /// The range of each item in the collected text.
fn ranges(&self) -> impl Iterator<Item = Range> + '_ {
let mut cursor = 0;
self.strings().map(move |string| {
let start = cursor;
cursor += string.len();
start .. cursor
})
}
/// The string representation of each child.
fn strings(&self) -> impl Iterator<Item = &str> {
self.children.iter().map(|child| match child {
ParChild::Spacing(_) => " ",
ParChild::Text(ref piece, _, _) => piece,
ParChild::Any(_, _) => "\u{FFFC}",
})
}
}
impl From<ParNode> for AnyNode {
fn from(par: ParNode) -> Self {
Self::new(par)
}
}
impl Debug for ParChild {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
Self::Spacing(amount) => write!(f, "Spacing({:?})", amount),
Self::Text(text, _, align) => write!(f, "Text({:?}, {:?})", text, align),
Self::Any(any, align) => {
f.debug_tuple("Any").field(any).field(align).finish()
}
}
} }
} }
@ -85,16 +113,6 @@ struct ParLayout<'a> {
ranges: Vec<Range>, ranges: Vec<Range>,
} }
/// A prepared item in a paragraph layout.
enum ParItem<'a> {
/// Spacing between other items.
Spacing(Length),
/// A shaped text run with consistent direction.
Text(ShapedText<'a>, Align),
/// A layouted child node.
Frame(Frame, Align),
}
impl<'a> ParLayout<'a> { impl<'a> ParLayout<'a> {
/// Build a paragraph layout for the given node. /// Build a paragraph layout for the given node.
fn new( fn new(
@ -102,28 +120,26 @@ impl<'a> ParLayout<'a> {
areas: &Areas, areas: &Areas,
par: &'a ParNode, par: &'a ParNode,
bidi: BidiInfo<'a>, bidi: BidiInfo<'a>,
ranges: Vec<Range>,
) -> Self { ) -> Self {
// Prepare an iterator over each child an the range it spans. // Prepare an iterator over each child an the range it spans.
let iter = ranges.into_iter().zip(&par.children);
let mut items = vec![]; let mut items = vec![];
let mut ranges = vec![]; let mut ranges = vec![];
// Layout the children and collect them into items. // Layout the children and collect them into items.
for (range, child) in iter { for (range, child) in par.ranges().zip(&par.children) {
match *child { match *child {
ParChild::Spacing(amount) => { ParChild::Spacing(amount) => {
items.push(ParItem::Spacing(amount)); items.push(ParItem::Spacing(amount));
ranges.push(range); ranges.push(range);
} }
ParChild::Text(_, ref props, align) => { ParChild::Text(_, ref props, align) => {
split_runs(&bidi, range, |sub, dir| { // TODO: Also split by language and script.
let text = &bidi.text[sub.clone()]; for (subrange, dir) in split_runs(&bidi, range) {
let shaped = shape(text, dir, &mut ctx.env.fonts, props); let text = &bidi.text[subrange.clone()];
let shaped = shape(ctx, text, dir, props);
items.push(ParItem::Text(shaped, align)); items.push(ParItem::Text(shaped, align));
ranges.push(sub); ranges.push(subrange);
}); }
} }
ParChild::Any(ref node, align) => { ParChild::Any(ref node, align) => {
let frames = node.layout(ctx, areas); let frames = node.layout(ctx, areas);
@ -141,23 +157,33 @@ impl<'a> ParLayout<'a> {
/// Find first-fit line breaks and build the paragraph. /// Find first-fit line breaks and build the paragraph.
fn build(self, ctx: &mut LayoutContext, areas: Areas, par: &ParNode) -> Vec<Frame> { fn build(self, ctx: &mut LayoutContext, areas: Areas, par: &ParNode) -> Vec<Frame> {
let mut start = 0;
let mut last = None;
let mut stack = LineStack::new(par.line_spacing, areas); let mut stack = LineStack::new(par.line_spacing, areas);
// The current line attempt.
// Invariant: Always fits into `stack.areas.current`.
let mut last = None;
// The start of the line in `last`.
let mut start = 0;
// Find suitable line breaks. // Find suitable line breaks.
// TODO: Provide line break opportunities on alignment changes. // TODO: Provide line break opportunities on alignment changes.
for (end, mandatory) in LineBreakIterator::new(self.bidi.text) { for (end, mandatory) in LineBreakIterator::new(self.bidi.text) {
let mut line = LineLayout::new(&self, start .. end, ctx); // Compute the line and its size.
let mut line = LineLayout::new(ctx, &self, start .. end);
// If the line doesn't fit anymore, we push the last fitting attempt
// into the stack and rebuild the line from its end. The resulting
// line cannot be broken up further.
if !stack.areas.current.fits(line.size) { if !stack.areas.current.fits(line.size) {
if let Some((last_line, last_end)) = last.take() { if let Some((last_line, last_end)) = last.take() {
stack.push(last_line); stack.push(last_line);
start = last_end; start = last_end;
line = LineLayout::new(&self, start .. end, ctx); line = LineLayout::new(ctx, &self, start .. end);
} }
} }
// If the line does not fit vertically, we start a new area.
if !stack.areas.current.height.fits(line.size.height) if !stack.areas.current.height.fits(line.size.height)
&& !stack.areas.in_full_last() && !stack.areas.in_full_last()
{ {
@ -165,14 +191,21 @@ impl<'a> ParLayout<'a> {
} }
if mandatory || !stack.areas.current.width.fits(line.size.width) { if mandatory || !stack.areas.current.width.fits(line.size.width) {
// If the line does not fit horizontally or we have a mandatory
// line break (i.e. due to "\n"), we push the line into the
// stack.
stack.push(line); stack.push(line);
start = end; start = end;
last = None; last = None;
// If there is a trailing line break at the end of the
// paragraph, we want to force an empty line.
if mandatory && end == self.bidi.text.len() { if mandatory && end == self.bidi.text.len() {
stack.push(LineLayout::new(&self, end .. end, ctx)); stack.push(LineLayout::new(ctx, &self, end .. end));
} }
} else { } else {
// Otherwise, the line fits both horizontally and vertically
// and we remember it.
last = Some((line, end)); last = Some((line, end));
} }
} }
@ -185,229 +218,57 @@ impl<'a> ParLayout<'a> {
} }
/// Find the index of the item whose range contains the `text_offset`. /// Find the index of the item whose range contains the `text_offset`.
#[track_caller] fn find(&self, text_offset: usize) -> Option<usize> {
fn find(&self, text_offset: usize) -> usize { self.ranges.binary_search_by(|r| r.locate(text_offset)).ok()
find_range(&self.ranges, text_offset).unwrap()
}
}
impl ParItem<'_> {
/// The size and baseline of the item.
pub fn measure(&self) -> (Size, Length) {
match self {
Self::Spacing(amount) => (Size::new(*amount, Length::ZERO), Length::ZERO),
Self::Text(shaped, _) => (shaped.size, shaped.baseline),
Self::Frame(frame, _) => (frame.size, frame.baseline),
}
} }
} }
/// Split a range of text into runs of consistent direction. /// Split a range of text into runs of consistent direction.
fn split_runs(bidi: &BidiInfo, range: Range, mut f: impl FnMut(Range, Dir)) { fn split_runs<'a>(
let levels = &bidi.levels[range.clone()]; bidi: &'a BidiInfo,
range: Range,
let mut start = range.start; ) -> impl Iterator<Item = (Range, Dir)> + 'a {
let mut last = match levels.first() { let mut cursor = range.start;
Some(&level) => level, bidi.levels[range.clone()]
None => return, .group_by_key(|&level| level)
}; .map(move |(level, group)| {
let start = cursor;
// Split into runs with the same embedding level. cursor += group.len();
for (idx, &level) in levels.iter().enumerate() { (start .. cursor, level.dir())
let end = range.start + idx; })
if last != level {
f(start .. end, last.dir());
start = end;
}
last = level;
} }
f(start .. range.end, last.dir()); /// A prepared item in a paragraph layout.
enum ParItem<'a> {
/// Spacing between other items.
Spacing(Length),
/// A shaped text run with consistent direction.
Text(ShapedText<'a>, Align),
/// A layouted child node.
Frame(Frame, Align),
} }
/// A lightweight representation of a line that spans a specific range in a impl ParItem<'_> {
/// paragraph's text. This type enables you to cheaply measure the size of a /// The size of the item.
/// line in a range before comitting to building the line's frame. pub fn size(&self) -> Size {
struct LineLayout<'a> { match self {
par: &'a ParLayout<'a>, Self::Spacing(amount) => Size::new(*amount, Length::ZERO),
line: Range, Self::Text(shaped, _) => shaped.size,
first: Option<ParItem<'a>>, Self::Frame(frame, _) => frame.size,
items: &'a [ParItem<'a>],
last: Option<ParItem<'a>>,
ranges: &'a [Range],
size: Size,
baseline: Length,
}
impl<'a> LineLayout<'a> {
/// Create a line which spans the given range.
fn new(par: &'a ParLayout<'a>, mut line: Range, ctx: &mut LayoutContext) -> Self {
// Find the items which bound the text range.
let last_idx = par.find(line.end - 1);
let first_idx = if line.is_empty() {
last_idx
} else {
par.find(line.start)
};
// Slice out the relevant items and ranges.
let mut items = &par.items[first_idx ..= last_idx];
let ranges = &par.ranges[first_idx ..= last_idx];
// Reshape the last item if it's split in half.
let mut last = None;
if let Some((ParItem::Text(shaped, align), rest)) = items.split_last() {
// Compute the string slice indices local to the shaped result.
let range = &par.ranges[last_idx];
let start = line.start.max(range.start) - range.start;
let end = line.end - range.start;
// Trim whitespace at the end of the line.
let end = start + shaped.text[start .. end].trim_end().len();
line.end = range.start + end;
if start != end || rest.is_empty() {
// Reshape that part (if the indices span the full range reshaping
// is fast and does nothing).
let reshaped = shaped.reshape(start .. end, &mut ctx.env.fonts);
last = Some(ParItem::Text(reshaped, *align));
}
items = rest;
}
// Reshape the start item if it's split in half.
let mut first = None;
if let Some((ParItem::Text(shaped, align), rest)) = items.split_first() {
let range = &par.ranges[first_idx];
let start = line.start - range.start;
let end = line.end.min(range.end) - range.start;
if start != end {
let reshaped = shaped.reshape(start .. end, &mut ctx.env.fonts);
first = Some(ParItem::Text(reshaped, *align));
}
items = rest;
}
let mut width = Length::ZERO;
let mut top = Length::ZERO;
let mut bottom = Length::ZERO;
for item in first.iter().chain(items).chain(&last) {
let (size, baseline) = item.measure();
width += size.width;
top = top.max(baseline);
bottom = bottom.max(size.height - baseline);
}
Self {
par,
line,
first,
items,
last,
ranges,
size: Size::new(width, top + bottom),
baseline: top,
} }
} }
/// Build the line's frame. /// The baseline of the item.
fn build(&self, ctx: &mut LayoutContext, width: Length) -> Frame { pub fn baseline(&self) -> Length {
let (size, baseline) = (self.size, self.baseline); match self {
let full_size = Size::new(size.width.max(width), size.height); Self::Spacing(_) => Length::ZERO,
Self::Text(shaped, _) => shaped.baseline,
let mut output = Frame::new(full_size, baseline); Self::Frame(frame, _) => frame.baseline,
let mut offset = Length::ZERO;
let mut ruler = Align::Start;
self.reordered(|item| {
let (frame, align) = match *item {
ParItem::Spacing(amount) => {
offset += amount;
return;
}
ParItem::Text(ref shaped, align) => {
(shaped.build(&mut ctx.env.fonts), align)
}
ParItem::Frame(ref frame, align) => (frame.clone(), align),
};
ruler = ruler.max(align);
let range = offset .. full_size.width - size.width + offset;
let x = ruler.resolve(self.par.dir, range);
let y = baseline - frame.baseline;
offset += frame.size.width;
output.push_frame(Point::new(x, y), frame);
});
output
}
/// Iterate through the line's items in visual order.
fn reordered(&self, mut f: impl FnMut(&ParItem<'a>)) {
if self.line.is_empty() {
return;
}
// Find the paragraph that contains the frame.
let para = self
.par
.bidi
.paragraphs
.iter()
.find(|para| para.range.contains(&self.line.start))
.unwrap();
// Compute the reordered ranges in visual order (left to right).
let (levels, runs) = self.par.bidi.visual_runs(para, self.line.clone());
// Find the items for each run.
for run in runs {
let first_idx = self.find(run.start);
let last_idx = self.find(run.end - 1);
let range = first_idx ..= last_idx;
// Provide the items forwards or backwards depending on the run's
// direction.
if levels[run.start].is_ltr() {
for item in range {
f(self.get(item));
}
} else {
for item in range.rev() {
f(self.get(item));
}
} }
} }
} }
/// Find the index of the item whose range contains the `text_offset`. /// A simple layouter that stacks lines into areas.
#[track_caller]
fn find(&self, text_offset: usize) -> usize {
find_range(self.ranges, text_offset).unwrap()
}
/// Get the item at the index.
#[track_caller]
fn get(&self, index: usize) -> &ParItem<'a> {
self.iter().nth(index).unwrap()
}
/// Iterate over the items of the line.
fn iter(&self) -> impl Iterator<Item = &ParItem<'a>> {
self.first.iter().chain(self.items).chain(&self.last)
}
}
/// Find the range that contains the position.
fn find_range(ranges: &[Range], pos: usize) -> Option<usize> {
ranges.binary_search_by(|r| r.locate(pos)).ok()
}
/// Stacks lines into paragraph frames.
struct LineStack<'a> { struct LineStack<'a> {
line_spacing: Length, line_spacing: Length,
areas: Areas, areas: Areas,
@ -428,36 +289,38 @@ impl<'a> LineStack<'a> {
} }
fn push(&mut self, line: LineLayout<'a>) { fn push(&mut self, line: LineLayout<'a>) {
self.areas.current.height -= line.size.height + self.line_spacing;
self.size.width = self.size.width.max(line.size.width); self.size.width = self.size.width.max(line.size.width);
self.size.height += line.size.height; self.size.height += line.size.height;
if !self.lines.is_empty() { if !self.lines.is_empty() {
self.size.height += self.line_spacing; self.size.height += self.line_spacing;
} }
self.areas.current.height -= line.size.height + self.line_spacing;
self.lines.push(line); self.lines.push(line);
} }
fn finish_area(&mut self, ctx: &mut LayoutContext) { fn finish_area(&mut self, ctx: &mut LayoutContext) {
let expand = self.areas.expand.horizontal; let expand = self.areas.expand.horizontal;
let full = self.areas.full.width; self.size.width = expand.resolve(self.size.width, self.areas.full.width);
self.size.width = expand.resolve(self.size.width, full);
let mut output = Frame::new(self.size, self.size.height); let mut output = Frame::new(self.size, self.size.height);
let mut y = Length::ZERO;
let mut first = true; let mut first = true;
let mut offset = Length::ZERO;
for line in mem::take(&mut self.lines) { for line in mem::take(&mut self.lines) {
let frame = line.build(ctx, self.size.width); let frame = line.build(ctx, self.size.width);
let height = frame.size.height; let Frame { size, baseline, .. } = frame;
let pos = Point::new(Length::ZERO, offset);
output.push_frame(pos, frame);
if first { if first {
output.baseline = y + frame.baseline; output.baseline = offset + baseline;
first = false; first = false;
} }
output.push_frame(Point::new(Length::ZERO, y), frame); offset += size.height + self.line_spacing;
y += height + self.line_spacing;
} }
self.finished.push(output); self.finished.push(output);
@ -471,6 +334,206 @@ impl<'a> LineStack<'a> {
} }
} }
/// A lightweight representation of a line that spans a specific range in a
/// paragraph's text. This type enables you to cheaply measure the size of a
/// line in a range before comitting to building the line's frame.
struct LineLayout<'a> {
/// The paragraph the line was created in.
par: &'a ParLayout<'a>,
/// The range the line spans in the paragraph.
line: Range,
/// A reshaped text item if the line sliced up a text item at the start.
first: Option<ParItem<'a>>,
/// Middle items which don't need to be reprocessed.
items: &'a [ParItem<'a>],
/// A reshaped text item if the line sliced up a text item at the end. If
/// there is only one text item, this takes precedence over `first`.
last: Option<ParItem<'a>>,
/// The ranges, indexed as `[first, ..items, last]`. The ranges for `first`
/// and `last` aren't trimmed to the line, but it doesn't matter because
/// we're just checking which range an index falls into.
ranges: &'a [Range],
/// The size of the line.
size: Size,
/// The baseline of the line.
baseline: Length,
}
impl<'a> LineLayout<'a> {
/// Create a line which spans the given range.
fn new(ctx: &mut LayoutContext, par: &'a ParLayout<'a>, mut line: Range) -> Self {
// Find the items which bound the text range.
let last_idx = par.find(line.end.saturating_sub(1)).unwrap();
let first_idx = if line.is_empty() {
last_idx
} else {
par.find(line.start).unwrap()
};
// Slice out the relevant items and ranges.
let mut items = &par.items[first_idx ..= last_idx];
let ranges = &par.ranges[first_idx ..= last_idx];
// Reshape the last item if it's split in half.
let mut last = None;
if let Some((ParItem::Text(shaped, align), rest)) = items.split_last() {
// Compute the range we want to shape, trimming whitespace at the
// end of the line.
let base = par.ranges[last_idx].start;
let start = line.start.max(base);
let end = start + par.bidi.text[start .. line.end].trim_end().len();
let range = start - base .. end - base;
// Reshape if necessary.
if range.len() < shaped.text.len() {
// If start == end and the rest is empty, then we have an empty
// line. To make that line have the appropriate height, we shape the
// empty string.
if !range.is_empty() || rest.is_empty() {
// Reshape that part.
let reshaped = shaped.reshape(ctx, range);
last = Some(ParItem::Text(reshaped, *align));
}
items = rest;
line.end = end;
}
}
// Reshape the start item if it's split in half.
let mut first = None;
if let Some((ParItem::Text(shaped, align), rest)) = items.split_first() {
// Compute the range we want to shape.
let Range { start: base, end: first_end } = par.ranges[first_idx];
let start = line.start;
let end = line.end.min(first_end);
let range = start - base .. end - base;
// Reshape if necessary.
if range.len() < shaped.text.len() {
if !range.is_empty() {
let reshaped = shaped.reshape(ctx, range);
first = Some(ParItem::Text(reshaped, *align));
}
items = rest;
}
}
let mut width = Length::ZERO;
let mut top = Length::ZERO;
let mut bottom = Length::ZERO;
// Measure the size of the line.
for item in first.iter().chain(items).chain(&last) {
let size = item.size();
let baseline = item.baseline();
width += size.width;
top = top.max(baseline);
bottom = bottom.max(size.height - baseline);
}
Self {
par,
line,
first,
items,
last,
ranges,
size: Size::new(width, top + bottom),
baseline: top,
}
}
/// Build the line's frame.
fn build(&self, ctx: &mut LayoutContext, width: Length) -> Frame {
let full_width = self.size.width.max(width);
let full_size = Size::new(full_width, self.size.height);
let free_width = full_width - self.size.width;
let mut output = Frame::new(full_size, self.baseline);
let mut ruler = Align::Start;
let mut offset = Length::ZERO;
self.reordered(|item| {
let frame = match *item {
ParItem::Spacing(amount) => {
offset += amount;
return;
}
ParItem::Text(ref shaped, align) => {
ruler = ruler.max(align);
shaped.build(ctx)
}
ParItem::Frame(ref frame, align) => {
ruler = ruler.max(align);
frame.clone()
}
};
let Frame { size, baseline, .. } = frame;
let pos = Point::new(
ruler.resolve(self.par.dir, offset .. free_width + offset),
self.baseline - baseline,
);
output.push_frame(pos, frame);
offset += size.width;
});
output
}
/// Iterate through the line's items in visual order.
fn reordered(&self, mut f: impl FnMut(&ParItem<'a>)) {
// The bidi crate doesn't like empty lines.
if self.line.is_empty() {
return;
}
// Find the paragraph that contains the line.
let para = self
.par
.bidi
.paragraphs
.iter()
.find(|para| para.range.contains(&self.line.start))
.unwrap();
// Compute the reordered ranges in visual order (left to right).
let (levels, runs) = self.par.bidi.visual_runs(para, self.line.clone());
// Find the items for each run.
for run in runs {
let first_idx = self.find(run.start).unwrap();
let last_idx = self.find(run.end - 1).unwrap();
let range = first_idx ..= last_idx;
// Provide the items forwards or backwards depending on the run's
// direction.
if levels[run.start].is_ltr() {
for item in range {
f(self.get(item).unwrap());
}
} else {
for item in range.rev() {
f(self.get(item).unwrap());
}
}
}
}
/// Find the index of the item whose range contains the `text_offset`.
fn find(&self, text_offset: usize) -> Option<usize> {
self.ranges.binary_search_by(|r| r.locate(text_offset)).ok()
}
/// Get the item at the index.
fn get(&self, index: usize) -> Option<&ParItem<'a>> {
self.first.iter().chain(self.items).chain(&self.last).nth(index)
}
}
/// Helper methods for BiDi levels. /// Helper methods for BiDi levels.
trait LevelExt: Sized { trait LevelExt: Sized {
fn from_dir(dir: Dir) -> Option<Self>; fn from_dir(dir: Dir) -> Option<Self>;
@ -490,21 +553,3 @@ impl LevelExt for Level {
if self.is_ltr() { Dir::LTR } else { Dir::RTL } if self.is_ltr() { Dir::LTR } else { Dir::RTL }
} }
} }
impl From<ParNode> for AnyNode {
fn from(par: ParNode) -> Self {
Self::new(par)
}
}
impl Debug for ParChild {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
Self::Spacing(amount) => write!(f, "Spacing({:?})", amount),
Self::Text(text, _, align) => write!(f, "Text({:?}, {:?})", text, align),
Self::Any(any, align) => {
f.debug_tuple("Any").field(any).field(align).finish()
}
}
}
}

View File

@ -6,7 +6,7 @@ use fontdock::FaceId;
use rustybuzz::UnicodeBuffer; use rustybuzz::UnicodeBuffer;
use ttf_parser::GlyphId; use ttf_parser::GlyphId;
use super::{Element, Frame, Glyph, Text}; use super::{Element, Frame, Glyph, LayoutContext, Text};
use crate::env::FontLoader; use crate::env::FontLoader;
use crate::exec::FontProps; use crate::exec::FontProps;
use crate::font::FaceBuf; use crate::font::FaceBuf;
@ -60,12 +60,12 @@ enum Side {
impl<'a> ShapedText<'a> { impl<'a> ShapedText<'a> {
/// Build the shaped text's frame. /// Build the shaped text's frame.
pub fn build(&self, loader: &mut FontLoader) -> Frame { pub fn build(&self, ctx: &mut LayoutContext) -> Frame {
let mut frame = Frame::new(self.size, self.baseline); let mut frame = Frame::new(self.size, self.baseline);
let mut x = Length::ZERO; let mut offset = Length::ZERO;
for (face_id, group) in self.glyphs.as_ref().group_by_key(|g| g.face_id) { for (face_id, group) in self.glyphs.as_ref().group_by_key(|g| g.face_id) {
let pos = Point::new(x, self.baseline); let pos = Point::new(offset, self.baseline);
let mut text = Text { let mut text = Text {
face_id, face_id,
size: self.props.size, size: self.props.size,
@ -73,12 +73,12 @@ impl<'a> ShapedText<'a> {
glyphs: vec![], glyphs: vec![],
}; };
let face = loader.face(face_id); let face = ctx.env.fonts.face(face_id);
for glyph in group { for glyph in group {
let x_advance = face.convert(glyph.x_advance).scale(self.props.size); let x_advance = face.convert(glyph.x_advance).scale(self.props.size);
let x_offset = face.convert(glyph.x_offset).scale(self.props.size); let x_offset = face.convert(glyph.x_offset).scale(self.props.size);
text.glyphs.push(Glyph { id: glyph.glyph_id, x_advance, x_offset }); text.glyphs.push(Glyph { id: glyph.glyph_id, x_advance, x_offset });
x += x_advance; offset += x_advance;
} }
frame.push(pos, Element::Text(text)); frame.push(pos, Element::Text(text));
@ -91,11 +91,11 @@ impl<'a> ShapedText<'a> {
/// shaping process if possible. /// shaping process if possible.
pub fn reshape( pub fn reshape(
&'a self, &'a self,
ctx: &mut LayoutContext,
text_range: Range<usize>, text_range: Range<usize>,
loader: &mut FontLoader,
) -> ShapedText<'a> { ) -> ShapedText<'a> {
if let Some(glyphs) = self.slice_safe_to_break(text_range.clone()) { if let Some(glyphs) = self.slice_safe_to_break(text_range.clone()) {
let (size, baseline) = measure(glyphs, loader, self.props); let (size, baseline) = measure(&mut ctx.env.fonts, glyphs, self.props);
Self { Self {
text: &self.text[text_range], text: &self.text[text_range],
dir: self.dir, dir: self.dir,
@ -105,7 +105,7 @@ impl<'a> ShapedText<'a> {
glyphs: Cow::Borrowed(glyphs), glyphs: Cow::Borrowed(glyphs),
} }
} else { } else {
shape(&self.text[text_range], self.dir, loader, self.props) shape(ctx, &self.text[text_range], self.dir, self.props)
} }
} }
@ -176,18 +176,21 @@ impl Debug for ShapedText<'_> {
/// Shape text into [`ShapedText`]. /// Shape text into [`ShapedText`].
pub fn shape<'a>( pub fn shape<'a>(
ctx: &mut LayoutContext,
text: &'a str, text: &'a str,
dir: Dir, dir: Dir,
loader: &mut FontLoader,
props: &'a FontProps, props: &'a FontProps,
) -> ShapedText<'a> { ) -> ShapedText<'a> {
let loader = &mut ctx.env.fonts;
let mut glyphs = vec![]; let mut glyphs = vec![];
let families = props.families.iter(); let families = props.families.iter();
if !text.is_empty() { if !text.is_empty() {
shape_segment(&mut glyphs, 0, text, dir, loader, props, families, None); shape_segment(loader, &mut glyphs, 0, text, dir, props, families, None);
} }
let (size, baseline) = measure(&glyphs, loader, props); let (size, baseline) = measure(loader, &glyphs, props);
ShapedText { ShapedText {
text, text,
dir, dir,
@ -200,14 +203,14 @@ pub fn shape<'a>(
/// Shape text with font fallback using the `families` iterator. /// Shape text with font fallback using the `families` iterator.
fn shape_segment<'a>( fn shape_segment<'a>(
loader: &mut FontLoader,
glyphs: &mut Vec<ShapedGlyph>, glyphs: &mut Vec<ShapedGlyph>,
base: usize, base: usize,
text: &str, text: &str,
dir: Dir, dir: Dir,
loader: &mut FontLoader,
props: &FontProps, props: &FontProps,
mut families: impl Iterator<Item = &'a str> + Clone, mut families: impl Iterator<Item = &'a str> + Clone,
mut first: Option<FaceId>, mut first_face: Option<FaceId>,
) { ) {
// Select the font family. // Select the font family.
let (face_id, fallback) = loop { let (face_id, fallback) = loop {
@ -219,17 +222,16 @@ fn shape_segment<'a>(
}, },
// We're out of families, so we don't do any more fallback and just // We're out of families, so we don't do any more fallback and just
// shape the tofus with the first face we originally used. // shape the tofus with the first face we originally used.
None => match first { None => match first_face {
Some(id) => break (id, false), Some(id) => break (id, false),
None => return, None => return,
}, },
} }
}; };
// Register that this is the first available font. // Remember the id if this the first available face since we use that one to
if first.is_none() { // shape tofus.
first = Some(face_id); first_face.get_or_insert(face_id);
}
// Fill the buffer with our text. // Fill the buffer with our text.
let mut buffer = UnicodeBuffer::new(); let mut buffer = UnicodeBuffer::new();
@ -245,7 +247,8 @@ fn shape_segment<'a>(
let infos = buffer.glyph_infos(); let infos = buffer.glyph_infos();
let pos = buffer.glyph_positions(); let pos = buffer.glyph_positions();
// Collect the shaped glyphs, reshaping with the next font if necessary. // Collect the shaped glyphs, doing fallback and shaping parts again with
// the next font if necessary.
let mut i = 0; let mut i = 0;
while i < infos.len() { while i < infos.len() {
let info = &infos[i]; let info = &infos[i];
@ -263,30 +266,32 @@ fn shape_segment<'a>(
safe_to_break: !info.unsafe_to_break(), safe_to_break: !info.unsafe_to_break(),
}); });
} else { } else {
// Do font fallback if the glyph is a tofu. // Determine the source text range for the tofu sequence.
// let range = {
// First, search for the end of the tofu sequence. // First, search for the end of the tofu sequence.
let k = i; let k = i;
while infos.get(i + 1).map_or(false, |info| info.codepoint == 0) { while infos.get(i + 1).map_or(false, |info| info.codepoint == 0) {
i += 1; i += 1;
} }
// Determine the source text range for the tofu sequence. // Then, determine the start and end text index.
let range = {
// Examples
// //
// Here, _ is a tofu. // Examples:
// Note that the glyph cluster length is greater than 1 char! // Everything is shown in visual order. Tofus are written as "_".
// We want to find out that the tofus span the text `2..6`.
// Note that the clusters are longer than 1 char.
// //
// Left-to-right clusters: // Left-to-right:
// h a l i h a l l o // Text: h a l i h a l l o
// A _ _ C E // Glyphs: A _ _ C E
// 0 2 4 6 8 // Clusters: 0 2 4 6 8
// k=1 i=2
// //
// Right-to-left clusters: // Right-to-left:
// O L L A H I L A H // Text: O L L A H I L A H
// E C _ _ A // Glyphs: E C _ _ A
// 8 6 4 2 0 // Clusters: 8 6 4 2 0
// k=2 i=3
let ltr = dir.is_positive(); let ltr = dir.is_positive();
let first = if ltr { k } else { i }; let first = if ltr { k } else { i };
@ -295,22 +300,21 @@ fn shape_segment<'a>(
let last = if ltr { i.checked_add(1) } else { k.checked_sub(1) }; let last = if ltr { i.checked_add(1) } else { k.checked_sub(1) };
let end = last let end = last
.and_then(|last| infos.get(last)) .and_then(|last| infos.get(last))
.map(|info| info.cluster as usize) .map_or(text.len(), |info| info.cluster as usize);
.unwrap_or(text.len());
start .. end start .. end
}; };
// Recursively shape the tofu sequence with the next family. // Recursively shape the tofu sequence with the next family.
shape_segment( shape_segment(
loader,
glyphs, glyphs,
base + range.start, base + range.start,
&text[range], &text[range],
dir, dir,
loader,
props, props,
families.clone(), families.clone(),
first, first_face,
); );
} }
@ -321,14 +325,14 @@ fn shape_segment<'a>(
/// Measure the size and baseline of a run of shaped glyphs with the given /// Measure the size and baseline of a run of shaped glyphs with the given
/// properties. /// properties.
fn measure( fn measure(
glyphs: &[ShapedGlyph],
loader: &mut FontLoader, loader: &mut FontLoader,
glyphs: &[ShapedGlyph],
props: &FontProps, props: &FontProps,
) -> (Size, Length) { ) -> (Size, Length) {
let mut width = Length::ZERO;
let mut top = Length::ZERO; let mut top = Length::ZERO;
let mut bottom = Length::ZERO; let mut bottom = Length::ZERO;
let mut width = Length::ZERO; let mut expand_vertical = |face: &FaceBuf| {
let mut vertical = |face: &FaceBuf| {
top = top.max(face.vertical_metric(props.top_edge).scale(props.size)); top = top.max(face.vertical_metric(props.top_edge).scale(props.size));
bottom = bottom.max(-face.vertical_metric(props.bottom_edge).scale(props.size)); bottom = bottom.max(-face.vertical_metric(props.bottom_edge).scale(props.size));
}; };
@ -338,14 +342,14 @@ fn measure(
// first available font. // first available font.
for family in props.families.iter() { for family in props.families.iter() {
if let Some(face_id) = loader.query(family, props.variant) { if let Some(face_id) = loader.query(family, props.variant) {
vertical(loader.face(face_id)); expand_vertical(loader.face(face_id));
break; break;
} }
} }
} else { } else {
for (face_id, group) in glyphs.group_by_key(|g| g.face_id) { for (face_id, group) in glyphs.group_by_key(|g| g.face_id) {
let face = loader.face(face_id); let face = loader.face(face_id);
vertical(face); expand_vertical(face);
for glyph in group { for glyph in group {
width += face.convert(glyph.x_advance).scale(props.size); width += face.convert(glyph.x_advance).scale(props.size);

View File

@ -1,4 +1,5 @@
/// Utilities. //! Utilities.
use std::cmp::Ordering; use std::cmp::Ordering;
use std::ops::Range; use std::ops::Range;