Refactor paragraph layout 📰

This commit is contained in:
Laurenz 2020-10-11 22:41:21 +02:00
parent 607f4395f9
commit 1b3eb42003

View File

@ -1,55 +1,36 @@
use super::*;
/// A node that arranges its children into a paragraph.
///
/// Boxes are laid out along the cross axis as long as they fit into a line.
/// When necessary, a line break is inserted and the new line is offset along
/// the main axis by the height of the previous line plus extra line spacing.
#[derive(Debug, Clone, PartialEq)]
pub struct Par {
/// The `main` and `cross` directions of this paragraph.
///
/// The children are placed in lines along the `cross` direction. The lines
/// are stacked along the `main` direction.
pub dirs: Gen<Dir>,
pub line_spacing: Length,
pub children: Vec<LayoutNode>,
/// How to align _this_ paragraph in _its_ parent.
pub aligns: Gen<Align>,
pub expand: Spec<bool>,
/// Whether to expand the cross axis to fill the area or to fit the content.
pub cross_expansion: Expansion,
/// The spacing to insert after each line.
pub line_spacing: Length,
/// The nodes to be arranged in a paragraph.
pub children: Vec<LayoutNode>,
}
#[async_trait(?Send)]
impl Layout for Par {
async fn layout(
&self,
ctx: &mut LayoutContext,
constraints: LayoutConstraints,
) -> Vec<Layouted> {
let mut layouter = LineLayouter::new(LineContext {
dirs: self.dirs,
spaces: constraints.spaces,
repeat: constraints.repeat,
line_spacing: self.line_spacing,
expand: self.expand,
});
async fn layout(&self, ctx: &mut LayoutContext, areas: &Areas) -> Vec<Layouted> {
let mut layouter = ParLayouter::new(self, areas.clone());
for child in &self.children {
let items = child
.layout(ctx, LayoutConstraints {
spaces: layouter.remaining(),
repeat: constraints.repeat,
})
.await;
for item in items {
match item {
Layouted::Spacing(amount) => layouter.push_spacing(amount),
Layouted::Box(boxed, aligns) => layouter.push_box(boxed, aligns),
for layouted in child.layout(ctx, &layouter.areas).await {
match layouted {
Layouted::Spacing(spacing) => layouter.spacing(spacing),
Layouted::Boxed(boxed, aligns) => layouter.boxed(boxed, aligns.cross),
}
}
}
layouter
.finish()
.into_iter()
.map(|boxed| Layouted::Box(boxed, self.aligns))
.collect()
layouter.finish()
}
}
@ -59,447 +40,145 @@ impl From<Par> for LayoutNode {
}
}
/// Performs the line layouting.
struct LineLayouter {
/// The context used for line layouting.
ctx: LineContext,
/// The underlying layouter that stacks the finished lines.
stack: StackLayouter,
/// The in-progress line.
run: LineRun,
}
/// The context for line layouting.
#[derive(Debug, Clone)]
struct LineContext {
/// The layout directions.
struct ParLayouter<'a> {
par: &'a Par,
main: SpecAxis,
cross: SpecAxis,
dirs: Gen<Dir>,
/// The spaces to layout into.
spaces: Vec<LayoutSpace>,
/// Whether to spill over into copies of the last space or finish layouting
/// when the last space is used up.
repeat: bool,
/// The spacing to be inserted between each pair of lines.
line_spacing: Length,
/// Whether to expand the size of the resulting layout to the full size of
/// this space or to shrink it to fit the content.
expand: Spec<bool>,
areas: Areas,
layouted: Vec<Layouted>,
lines: Vec<(Length, BoxLayout, Align)>,
lines_size: Gen<Length>,
run: Vec<(Length, BoxLayout, Align)>,
run_size: Gen<Length>,
run_ruler: Align,
}
impl LineLayouter {
/// Create a new line layouter.
fn new(ctx: LineContext) -> Self {
impl<'a> ParLayouter<'a> {
fn new(par: &'a Par, areas: Areas) -> Self {
Self {
stack: StackLayouter::new(StackContext {
spaces: ctx.spaces.clone(),
dirs: ctx.dirs,
repeat: ctx.repeat,
expand: ctx.expand,
}),
ctx,
run: LineRun::new(),
par,
main: par.dirs.main.axis(),
cross: par.dirs.cross.axis(),
dirs: par.dirs,
areas,
layouted: vec![],
lines: vec![],
lines_size: Gen::ZERO,
run: vec![],
run_size: Gen::ZERO,
run_ruler: Align::Start,
}
}
/// Add a layout.
fn push_box(&mut self, layout: BoxLayout, aligns: Gen<Align>) {
let dirs = self.ctx.dirs;
if let Some(prev) = self.run.aligns {
if aligns.main != prev.main {
// TODO: Issue warning for non-fitting alignment in
// non-repeating context.
let fitting = aligns.main >= self.stack.space.allowed_align;
if !fitting && self.ctx.repeat {
self.finish_space(true);
fn spacing(&mut self, amount: Length) {
let cross_full = self.areas.current.rem.get(self.cross);
self.run_size.cross = (self.run_size.cross + amount).min(cross_full);
}
fn boxed(&mut self, layout: BoxLayout, align: Align) {
if self.run_ruler > align {
self.finish_run();
}
let fits = {
let mut usable = self.areas.current.rem;
*usable.get_mut(self.cross) -= self.run_size.cross;
usable.fits(layout.size)
};
if !fits {
self.finish_run();
while !self.areas.current.rem.fits(layout.size) {
if self.areas.in_full_last() {
// TODO: Diagnose once the necessary spans exist.
let _ = warning!("cannot fit box into any area");
break;
} else {
self.finish_line();
self.finish_area();
}
}
}
} else if aligns.cross < prev.cross {
self.finish_line();
} else if aligns.cross > prev.cross {
let usable = self.stack.usable().get(dirs.cross.axis());
let mut rest_run = LineRun::new();
rest_run.size.main = self.run.size.main;
let size = layout.size.switch(self.dirs);
self.run.push((self.run_size.cross, layout, align));
// FIXME: Alignment in non-expanding parent.
rest_run.usable = Some(match aligns.cross {
Align::Start => unreachable!("start > x"),
Align::Center => usable - 2.0 * self.run.size.cross,
Align::End => usable - self.run.size.cross,
self.run_size.cross += size.cross;
self.run_size.main = self.run_size.main.max(size.main);
self.run_ruler = align;
}
fn finish_run(&mut self) {
let size = Gen::new(self.run_size.main, match self.par.cross_expansion {
Expansion::Fill => self.areas.current.full.get(self.cross),
Expansion::Fit => self.run_size.cross,
});
self.finish_line();
let mut output = BoxLayout::new(size.switch(self.dirs).to_size());
// Move back up in the stack layouter.
self.stack.push_spacing(-rest_run.size.main - self.ctx.line_spacing);
self.run = rest_run;
}
}
for (before, layout, align) in std::mem::take(&mut self.run) {
let child_cross_size = layout.size.get(self.cross);
let size = layout.size.switch(dirs);
let usable = self.usable();
if usable.main < size.main || usable.cross < size.cross {
if !self.line_is_empty() {
self.finish_line();
}
// TODO: Issue warning about overflow if there is overflow.
let usable = self.usable();
if usable.main < size.main || usable.cross < size.cross {
self.stack.skip_to_fitting_space(layout.size);
}
}
self.run.aligns = Some(aligns);
self.run.layouts.push((self.run.size.cross, layout));
self.run.size.cross += size.cross;
self.run.size.main = self.run.size.main.max(size.main);
}
/// Add spacing to the line.
fn push_spacing(&mut self, mut spacing: Length) {
spacing = spacing.min(self.usable().cross);
self.run.size.cross += spacing;
}
/// The remaining usable size of the line.
///
/// This specifies how much more would fit before a line break would be
/// needed.
fn usable(&self) -> Gen<Length> {
// The base is the usable space of the stack layouter.
let mut usable = self.stack.usable().switch(self.ctx.dirs);
// If there was another run already, override the stack's size.
if let Some(cross) = self.run.usable {
usable.cross = cross;
}
usable.cross -= self.run.size.cross;
usable
}
/// The remaining inner spaces. If something is laid out into these spaces,
/// it will fit into this layouter's underlying stack.
fn remaining(&self) -> Vec<LayoutSpace> {
let mut spaces = self.stack.remaining();
*spaces[0].size.get_mut(self.ctx.dirs.main.axis()) -= self.run.size.main;
spaces
}
/// Whether the currently set line is empty.
fn line_is_empty(&self) -> bool {
self.run.size == Gen::ZERO && self.run.layouts.is_empty()
}
/// Finish everything up and return the final collection of boxes.
fn finish(mut self) -> Vec<BoxLayout> {
self.finish_line_if_not_empty();
self.stack.finish()
}
/// Finish the active space and start a new one.
///
/// At the top level, this is a page break.
fn finish_space(&mut self, hard: bool) {
self.finish_line_if_not_empty();
self.stack.finish_space(hard)
}
/// Finish the active line and start a new one.
fn finish_line(&mut self) {
let dirs = self.ctx.dirs;
let mut layout = BoxLayout::new(self.run.size.switch(dirs).to_size());
let aligns = self.run.aligns.unwrap_or_default();
let children = std::mem::take(&mut self.run.layouts);
for (offset, child) in children {
let cross = if dirs.cross.is_positive() {
offset
// Position along the cross axis.
let cross = align.apply(if self.dirs.cross.is_positive() {
let after_with_self = self.run_size.cross - before;
before .. size.cross - after_with_self
} else {
self.run.size.cross - offset - child.size.get(dirs.cross.axis())
};
let before_with_self = before + child_cross_size;
let after = self.run_size.cross - (before + child_cross_size);
size.cross - before_with_self .. after
});
let pos = Gen::new(Length::ZERO, cross).switch(dirs).to_point();
layout.push_layout(pos, child);
let pos = Gen::new(Length::ZERO, cross).switch(self.dirs).to_point();
output.push_layout(pos, layout);
}
self.stack.push_box(layout, aligns);
self.stack.push_spacing(self.ctx.line_spacing);
self.run = LineRun::new();
self.lines.push((self.lines_size.main, output, self.run_ruler));
let main_offset = size.main + self.par.line_spacing;
*self.areas.current.rem.get_mut(self.main) -= main_offset;
self.lines_size.main += main_offset;
self.lines_size.cross = self.lines_size.cross.max(size.cross);
self.run_size = Gen::ZERO;
self.run_ruler = Align::Start;
}
fn finish_line_if_not_empty(&mut self) {
if !self.line_is_empty() {
self.finish_line()
}
}
}
fn finish_area(&mut self) {
let size = self.lines_size;
let mut output = BoxLayout::new(size.switch(self.dirs).to_size());
/// A sequence of boxes with the same alignment. A real line can consist of
/// multiple runs with different alignments.
struct LineRun {
/// The so-far accumulated items of the run.
layouts: Vec<(Length, BoxLayout)>,
/// The summed width and maximal height of the run.
size: Gen<Length>,
/// The alignment of all layouts in the line.
///
/// When a new run is created the alignment is yet to be determined and
/// `None` as such. Once a layout is added, its alignment decides the
/// alignment for the whole run.
aligns: Option<Gen<Align>>,
/// The amount of cross-space left by another run on the same line or `None`
/// if this is the only run so far.
usable: Option<Length>,
}
for (before, run, cross_align) in std::mem::take(&mut self.lines) {
let child_size = run.size.switch(self.dirs);
impl LineRun {
fn new() -> Self {
Self {
layouts: vec![],
size: Gen::ZERO,
aligns: None,
usable: None,
}
}
}
/// Performs the stack layouting.
pub(super) struct StackLayouter {
/// The context used for stack layouting.
pub ctx: StackContext,
/// The finished layouts.
pub layouts: Vec<BoxLayout>,
/// The in-progress space.
pub space: Space,
}
/// The context for stack layouting.
#[derive(Debug, Clone)]
pub(super) struct StackContext {
/// The layouting directions.
pub dirs: Gen<Dir>,
/// The spaces to layout into.
pub spaces: Vec<LayoutSpace>,
/// Whether to spill over into copies of the last space or finish layouting
/// when the last space is used up.
pub repeat: bool,
/// Whether to expand the size of the resulting layout to the full size of
/// this space or to shrink it to fit the content.
pub expand: Spec<bool>,
}
impl StackLayouter {
/// Create a new stack layouter.
pub fn new(ctx: StackContext) -> Self {
let space = ctx.spaces[0];
Self {
ctx,
layouts: vec![],
space: Space::new(0, true, space.size),
}
}
/// Add a layout to the stack.
pub fn push_box(&mut self, layout: BoxLayout, aligns: Gen<Align>) {
// If the alignment cannot be fitted in this space, finish it.
//
// TODO: Issue warning for non-fitting alignment in non-repeating
// context.
if aligns.main < self.space.allowed_align && self.ctx.repeat {
self.finish_space(true);
}
// TODO: Issue warning about overflow if there is overflow in a
// non-repeating context.
if !self.space.usable.fits(layout.size) && self.ctx.repeat {
self.skip_to_fitting_space(layout.size);
}
// Change the usable space and size of the space.
self.update_metrics(layout.size.switch(self.ctx.dirs));
// Add the box to the vector and remember that spacings are allowed
// again.
self.space.layouts.push((layout, aligns));
self.space.allowed_align = aligns.main;
}
/// Add spacing to the stack.
pub fn push_spacing(&mut self, mut spacing: Length) {
// Reduce the spacing such that it definitely fits.
let axis = self.ctx.dirs.main.axis();
spacing = spacing.min(self.space.usable.get(axis));
let size = Gen::new(spacing, Length::ZERO);
self.update_metrics(size);
self.space.layouts.push((
BoxLayout::new(size.switch(self.ctx.dirs).to_size()),
Gen::default(),
));
}
fn update_metrics(&mut self, added: Gen<Length>) {
let mut used = self.space.used.switch(self.ctx.dirs);
used.cross = used.cross.max(added.cross);
used.main += added.main;
self.space.used = used.switch(self.ctx.dirs).to_size();
*self.space.usable.get_mut(self.ctx.dirs.main.axis()) -= added.main;
}
/// Move to the first space that can fit the given size or do nothing
/// if no space is capable of that.
pub fn skip_to_fitting_space(&mut self, size: Size) {
let start = self.next_space();
for (index, space) in self.ctx.spaces[start ..].iter().enumerate() {
if space.size.fits(size) {
self.finish_space(true);
self.start_space(start + index, true);
break;
}
}
}
/// The remaining inner spaces. If something is laid out into these spaces,
/// it will fit into this stack.
pub fn remaining(&self) -> Vec<LayoutSpace> {
let mut spaces = vec![LayoutSpace {
base: self.space.size,
size: self.space.usable,
}];
spaces.extend(&self.ctx.spaces[self.next_space() ..]);
spaces
}
/// The remaining usable size.
pub fn usable(&self) -> Size {
self.space.usable
}
/// Whether the current layout space is empty.
pub fn space_is_empty(&self) -> bool {
self.space.used == Size::ZERO && self.space.layouts.is_empty()
}
/// Finish everything up and return the final collection of boxes.
pub fn finish(mut self) -> Vec<BoxLayout> {
if self.space.hard || !self.space_is_empty() {
self.finish_space(false);
}
self.layouts
}
/// Finish active current space and start a new one.
pub fn finish_space(&mut self, hard: bool) {
let dirs = self.ctx.dirs;
let main = dirs.main.axis();
let space = self.ctx.spaces[self.space.index];
let layout_size = {
let mut used_size = self.space.used;
if self.ctx.expand.horizontal {
used_size.width = space.size.width;
}
if self.ctx.expand.vertical {
used_size.height = space.size.height;
}
used_size
};
let mut sum = Length::ZERO;
let mut sums = Vec::with_capacity(self.space.layouts.len() + 1);
for (boxed, _) in &self.space.layouts {
sums.push(sum);
sum += boxed.size.get(main);
}
sums.push(sum);
let mut layout = BoxLayout::new(layout_size);
let used = layout_size.switch(dirs);
let children = std::mem::take(&mut self.space.layouts);
for (i, (boxed, aligns)) in children.into_iter().enumerate() {
let size = boxed.size.switch(dirs);
let before = sums[i];
let after = sum - sums[i + 1];
let main_len = used.main - size.main;
let main_range = if dirs.main.is_positive() {
before .. main_len - after
// Position along the main axis.
let main = if self.dirs.main.is_positive() {
before
} else {
main_len - before .. after
size.main - (before + child_size.main)
};
let cross_len = used.cross - size.cross;
let cross_range = if dirs.cross.is_positive() {
Length::ZERO .. cross_len
// Align along the cross axis.
let cross = cross_align.apply(if self.dirs.cross.is_positive() {
Length::ZERO .. size.cross - child_size.cross
} else {
cross_len .. Length::ZERO
};
size.cross - child_size.cross .. Length::ZERO
});
let main = aligns.main.apply(main_range);
let cross = aligns.cross.apply(cross_range);
let pos = Gen::new(main, cross).switch(dirs).to_point();
layout.push_layout(pos, boxed);
let pos = Gen::new(main, cross).switch(self.dirs).to_point();
output.push_layout(pos, run);
}
self.layouts.push(layout);
self.layouted.push(Layouted::Boxed(output, self.par.aligns));
// ------------------------------------------------------------------ //
// Step 5: Start the next space.
self.start_space(self.next_space(), hard)
self.areas.next();
self.lines_size = Gen::ZERO;
}
fn start_space(&mut self, index: usize, hard: bool) {
let space = self.ctx.spaces[index];
self.space = Space::new(index, hard, space.size);
}
fn next_space(&self) -> usize {
(self.space.index + 1).min(self.ctx.spaces.len() - 1)
}
}
/// A layout space composed of subspaces which can have different directions and
/// alignments.
#[derive(Debug)]
pub(super) struct Space {
/// The index of this space in `ctx.spaces`.
index: usize,
/// Whether to include a layout for this space even if it would be empty.
hard: bool,
/// The so-far accumulated layouts.
layouts: Vec<(BoxLayout, Gen<Align>)>,
/// The full size of this space.
size: Size,
/// The used size of this space.
used: Size,
/// The remaining space.
usable: Size,
/// Which alignments for new boxes are still allowed.
pub(super) allowed_align: Align,
}
impl Space {
fn new(index: usize, hard: bool, size: Size) -> Self {
Self {
index,
hard,
layouts: vec![],
size,
used: Size::ZERO,
usable: size,
allowed_align: Align::Start,
}
fn finish(mut self) -> Vec<Layouted> {
self.finish_run();
self.finish_area();
self.layouted
}
}